Multimodal Dialogue Response Generation
- URL: http://arxiv.org/abs/2110.08515v1
- Date: Sat, 16 Oct 2021 08:52:26 GMT
- Title: Multimodal Dialogue Response Generation
- Authors: Qingfeng Sun, Yujing Wang, Can Xu, Kai Zheng, Yaming Yang, Huang Hu,
Fei Xu, Jessica Zhang, Xiubo Geng, Daxin Jiang
- Abstract summary: We present a multimodal dialogue generation model, which takes the dialogue history as input, then generates a textual sequence or an image as response.
We consider multimodal dialogue generation under a natural assumption that only limited training examples are available.
In such a low-resource setting, we devise a novel conversational agent, Divter, in order to isolate parameters that depend on multimodal dialogues from the entire model.
- Score: 27.611204319057393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Responsing with image has been recognized as an important capability for an
intelligent conversational agent. Yet existing works only focus on exploring
the multimodal dialogue models which depend on retrieval-based methods, but
neglecting generation methods. To fill in the gaps, we first present a
multimodal dialogue generation model, which takes the dialogue history as
input, then generates a textual sequence or an image as response. Learning such
a model often requires multimodal dialogues containing both texts and images
which are difficult to obtain. Motivated by the challenge in practice, we
consider multimodal dialogue generation under a natural assumption that only
limited training examples are available. In such a low-resource setting, we
devise a novel conversational agent, Divter, in order to isolate parameters
that depend on multimodal dialogues from the entire generation model. By this
means, the major part of the model can be learned from a large number of
text-only dialogues and text-image pairs respectively, then the whole
parameters can be well fitted using the limited training examples. Extensive
experiments demonstrate our method achieves state-of-the-art results in both
automatic and human evaluation, and can generate informative text and
high-resolution image responses.
Related papers
- An End-to-End Model for Photo-Sharing Multi-modal Dialogue Generation [43.139415423751615]
Photo-sharing multi-modal dialogue generation requires a dialogue agent not only to generate text responses but also to share photos at the proper moment.
A pipeline model integrates an image caption model, a text generation model, and an image generation model to handle this complex multi-modal task.
We propose the first end-to-end model for photo-sharing multi-modal dialogue generation, which integrates an image perceptron and an image generator with a large language model.
arXiv Detail & Related papers (2024-08-16T10:33:19Z) - BI-MDRG: Bridging Image History in Multimodal Dialogue Response Generation [21.052101309555464]
Multimodal Dialogue Response Generation (MDRG) is a recently proposed task where the model needs to generate responses in texts, images, or a blend of both.
Previous work relies on the text modality as an intermediary step for both the image input and output of the model rather than adopting an end-to-end approach.
We propose BI-MDRG that bridges the response generation path such that the image history information is utilized for enhanced relevance of text responses to the image content.
arXiv Detail & Related papers (2024-08-12T05:22:42Z) - DialCLIP: Empowering CLIP as Multi-Modal Dialog Retriever [83.33209603041013]
We propose a parameter-efficient prompt-tuning method named DialCLIP for multi-modal dialog retrieval.
Our approach introduces a multi-modal context generator to learn context features which are distilled into prompts within the pre-trained vision-language model CLIP.
To facilitate various types of retrieval, we also design multiple experts to learn mappings from CLIP outputs to multi-modal representation space.
arXiv Detail & Related papers (2024-01-02T07:40:12Z) - IMAD: IMage-Augmented multi-modal Dialogue [0.043847653914745384]
This paper presents a novel perspective on multi-modal dialogue systems, which interprets the image in the context of the dialogue.
We propose a two-stage approach to automatically construct a multi-modal dialogue dataset.
In the first stage, we utilize text-to-image similarity and sentence similarity to identify which utterances could be replaced with an image.
In the second stage, we replace those utterances by selecting a subset of relevant images and filtering them with a visual question answering model.
arXiv Detail & Related papers (2023-05-17T18:38:10Z) - Stabilized In-Context Learning with Pre-trained Language Models for Few
Shot Dialogue State Tracking [57.92608483099916]
Large pre-trained language models (PLMs) have shown impressive unaided performance across many NLP tasks.
For more complex tasks such as dialogue state tracking (DST), designing prompts that reliably convey the desired intent is nontrivial.
We introduce a saliency model to limit dialogue text length, allowing us to include more exemplars per query.
arXiv Detail & Related papers (2023-02-12T15:05:10Z) - Grounding Language Models to Images for Multimodal Inputs and Outputs [89.30027812161686]
We propose an efficient method to ground pretrained text-only language models to the visual domain.
We process arbitrarily interleaved image-and-text data, and generate text interleaved with retrieved images.
arXiv Detail & Related papers (2023-01-31T18:33:44Z) - DialogCC: An Automated Pipeline for Creating High-Quality Multi-Modal Dialogue Dataset [18.449076451976236]
In this paper, we propose an automated pipeline to construct a multi-modal dialogue dataset.
In our pipeline, to guarantee the coherence between images and dialogue, we prompt GPT-4 to infer potential image-sharing moments.
Through this pipeline, we introduce DialogCC, a high-quality and diverse multi-modal dialogue dataset.
arXiv Detail & Related papers (2022-12-08T07:29:07Z) - Constructing Multi-Modal Dialogue Dataset by Replacing Text with
Semantically Relevant Images [17.076424447172297]
This paper proposes a 45k multi-modal dialogue dataset created with minimal human intervention.
Our method to create such a dataset consists of (1) preparing and pre-processing text dialogue datasets, (2) creating image-mixed dialogues by using a text-to-image replacement technique, and (3) employing a contextual-similarity-based filtering step.
arXiv Detail & Related papers (2021-07-19T08:44:11Z) - Filling the Gap of Utterance-aware and Speaker-aware Representation for
Multi-turn Dialogue [76.88174667929665]
A multi-turn dialogue is composed of multiple utterances from two or more different speaker roles.
In the existing retrieval-based multi-turn dialogue modeling, the pre-trained language models (PrLMs) as encoder represent the dialogues coarsely.
We propose a novel model to fill such a gap by modeling the effective utterance-aware and speaker-aware representations entailed in a dialogue history.
arXiv Detail & Related papers (2020-09-14T15:07:19Z) - Low-Resource Knowledge-Grounded Dialogue Generation [74.09352261943913]
We consider knowledge-grounded dialogue generation under a natural assumption that only limited training examples are available.
We devise a disentangled response decoder in order to isolate parameters that depend on knowledge-grounded dialogues from the entire generation model.
With only 1/8 training data, our model can achieve the state-of-the-art performance and generalize well on out-of-domain knowledge.
arXiv Detail & Related papers (2020-02-24T16:20:32Z) - Modality-Balanced Models for Visual Dialogue [102.35406085738325]
The Visual Dialog task requires a model to exploit both image and conversational context information to generate the next response to the dialogue.
We show that previous joint-modality (history and image) models over-rely on and are more prone to memorizing the dialogue history.
We present methods for this integration of the two models, via ensemble and consensus dropout fusion with shared parameters.
arXiv Detail & Related papers (2020-01-17T14:57:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.