Speeding-Up Back-Propagation in DNN: Approximate Outer Product with
Memory
- URL: http://arxiv.org/abs/2110.09164v1
- Date: Mon, 18 Oct 2021 10:32:59 GMT
- Title: Speeding-Up Back-Propagation in DNN: Approximate Outer Product with
Memory
- Authors: Eduin E. Hernandez, Stefano Rini, Tolga M. Duman
- Abstract summary: We experimentally show that significant improvements in computational complexity as well as accuracy can indeed be obtained through Mem-AOPGD.
Mem-AOPGD implements an approximation of the gradient descent by considering only a subset of the outer products involved in the matrix multiplications that encompass backpropagation.
- Score: 26.687031691516797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, an algorithm for approximate evaluation of back-propagation in
DNN training is considered, which we term Approximate Outer Product Gradient
Descent with Memory (Mem-AOP-GD). The Mem-AOP-GD algorithm implements an
approximation of the stochastic gradient descent by considering only a subset
of the outer products involved in the matrix multiplications that encompass
backpropagation. In order to correct for the inherent bias in this
approximation, the algorithm retains in memory an accumulation of the outer
products that are not used in the approximation. We investigate the performance
of the proposed algorithm in terms of DNN training loss under two design
parameters: (i) the number of outer products used for the approximation, and
(ii) the policy used to select such outer products. We experimentally show that
significant improvements in computational complexity as well as accuracy can
indeed be obtained through Mem-AOPGD.
Related papers
- Efficient Learning of POMDPs with Known Observation Model in Average-Reward Setting [56.92178753201331]
We propose the Observation-Aware Spectral (OAS) estimation technique, which enables the POMDP parameters to be learned from samples collected using a belief-based policy.
We show the consistency of the OAS procedure, and we prove a regret guarantee of order $mathcalO(sqrtT log(T)$ for the proposed OAS-UCRL algorithm.
arXiv Detail & Related papers (2024-10-02T08:46:34Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
We study differentially private (DP) optimization problems under sparsity of individual gradients.
Building on this, we obtain pure- and approximate-DP algorithms with almost optimal rates for convex optimization with sparse gradients.
arXiv Detail & Related papers (2024-04-16T20:01:10Z) - An Adaptive Dimension Reduction Estimation Method for High-dimensional
Bayesian Optimization [6.79843988450982]
We propose a two-step optimization framework to extend BO to high-dimensional settings.
Our algorithm offers the flexibility to operate these steps either concurrently or in sequence.
Numerical experiments validate the efficacy of our method in challenging scenarios.
arXiv Detail & Related papers (2024-03-08T16:21:08Z) - Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
novel noise-free Bayesian optimization strategies that rely on a random exploration step to enhance the accuracy of Gaussian process surrogate models.
New algorithms retain the ease of implementation of the classical GP-UCB, but an additional exploration step facilitates their convergence.
arXiv Detail & Related papers (2024-01-30T14:16:06Z) - Online estimation of the inverse of the Hessian for stochastic optimization with application to universal stochastic Newton algorithms [4.389938747401259]
This paper addresses second-order optimization for estimating the minimizer of a convex function written as an expectation.
A direct recursive estimation technique for the inverse Hessian matrix using a Robbins-Monro procedure is introduced.
Above all, it allows to develop universal Newton methods and investigate the efficiency of the proposed approach.
arXiv Detail & Related papers (2024-01-15T13:58:30Z) - Variational Linearized Laplace Approximation for Bayesian Deep Learning [11.22428369342346]
We propose a new method for approximating Linearized Laplace Approximation (LLA) using a variational sparse Gaussian Process (GP)
Our method is based on the dual RKHS formulation of GPs and retains, as the predictive mean, the output of the original DNN.
It allows for efficient optimization, which results in sub-linear training time in the size of the training dataset.
arXiv Detail & Related papers (2023-02-24T10:32:30Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
An AI-assisted design method based on topology optimization is presented, which is able to obtain optimized designs in a direct way.
Designs are provided by an artificial neural network, the predictor, on the basis of boundary conditions and degree of filling as input data.
arXiv Detail & Related papers (2020-12-11T14:33:27Z) - Efficient Learning of Generative Models via Finite-Difference Score
Matching [111.55998083406134]
We present a generic strategy to efficiently approximate any-order directional derivative with finite difference.
Our approximation only involves function evaluations, which can be executed in parallel, and no gradient computations.
arXiv Detail & Related papers (2020-07-07T10:05:01Z) - A Robust Matching Pursuit Algorithm Using Information Theoretic Learning [37.968665739578185]
A new OMP algorithm is developed based on the information theoretic learning (ITL)
The experimental results on both simulated and real-world data consistently demonstrate the superiority of the proposed OMP algorithm in data recovery, image reconstruction, and classification.
arXiv Detail & Related papers (2020-05-10T01:36:00Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.