pygrank: A Python Package for Graph Node Ranking
- URL: http://arxiv.org/abs/2110.09274v1
- Date: Mon, 18 Oct 2021 13:13:21 GMT
- Title: pygrank: A Python Package for Graph Node Ranking
- Authors: Emmanouil Krasanakis, Symeon Papadopoulos, Ioannis Kompatsiaris,
Andreas Symeonidis
- Abstract summary: We introduce pygrank, an open source Python package to define, run and evaluate node ranking algorithms.
We provide object-oriented and extensively unit-tested algorithm components, such as graph filters, post-processors, measures, benchmarks and online tuning.
- Score: 13.492381728793612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce pygrank, an open source Python package to define, run and
evaluate node ranking algorithms. We provide object-oriented and extensively
unit-tested algorithm components, such as graph filters, post-processors,
measures, benchmarks and online tuning. Computations can be delegated to numpy,
tensorflow or pytorch backends and fit in back-propagation pipelines. Classes
can be combined to define interoperable complex algorithms. Within the context
of this paper we compare the package with related alternatives and demonstrate
its flexibility and ease of use with code examples.
Related papers
- TopoX: A Suite of Python Packages for Machine Learning on Topological
Domains [89.9320422266332]
TopoX is a Python software suite that provides reliable and user-friendly building blocks for computing and machine learning on topological domains.
TopoX consists of three packages: TopoNetX, TopoEmbedX and TopoModelx.
arXiv Detail & Related papers (2024-02-04T10:41:40Z) - PyPOTS: A Python Toolbox for Data Mining on Partially-Observed Time
Series [0.0]
PyPOTS is an open-source Python library dedicated to data mining and analysis on partially-observed time series.
It provides easy access to diverse algorithms categorized into four tasks: imputation, classification, clustering, and forecasting.
arXiv Detail & Related papers (2023-05-30T07:57:05Z) - DADApy: Distance-based Analysis of DAta-manifolds in Python [51.37841707191944]
DADApy is a python software package for analysing and characterising high-dimensional data.
It provides methods for estimating the intrinsic dimension and the probability density, for performing density-based clustering and for comparing different distance metrics.
arXiv Detail & Related papers (2022-05-04T08:41:59Z) - IMBENS: Ensemble Class-imbalanced Learning in Python [26.007498723608155]
imbens is an open-source Python toolbox for implementing and deploying ensemble learning algorithms on class-imbalanced data.
imbens is released under the MIT open-source license and can be installed from Python Package Index (PyPI)
arXiv Detail & Related papers (2021-11-24T20:14:20Z) - Using Python for Model Inference in Deep Learning [0.6027358520885614]
We show how it is possible to meet performance and packaging constraints while performing inference in Python.
We present a way of using multiple Python interpreters within a single process to achieve scalable inference.
arXiv Detail & Related papers (2021-04-01T04:48:52Z) - Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer
Proxies [65.92826041406802]
We propose a Proxy-based deep Graph Metric Learning approach from the perspective of graph classification.
Multiple global proxies are leveraged to collectively approximate the original data points for each class.
We design a novel reverse label propagation algorithm, by which the neighbor relationships are adjusted according to ground-truth labels.
arXiv Detail & Related papers (2020-10-26T14:52:42Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
We re-interpret node aggregation from the perspective of kernel weighting.
We present a framework to consider feature similarity in an aggregation scheme.
We propose feature aggregation as the composition of the original neighbor-based kernel and a learnable kernel to encode feature similarities in a feature space.
arXiv Detail & Related papers (2020-05-16T04:44:29Z) - Geomstats: A Python Package for Riemannian Geometry in Machine Learning [5.449970675406181]
We introduce Geomstats, an open-source Python toolbox for computations and statistics on nonlinear equations.
We provide object-oriented and extensively unit-tested implementations.
We show that Geomstats provides reliable building blocks to foster research in differential geometry and statistics.
The source code is freely available under the MIT license at urlgeomstats.ai.
arXiv Detail & Related papers (2020-04-07T20:41:50Z) - Torch-Struct: Deep Structured Prediction Library [138.5262350501951]
We introduce Torch-Struct, a library for structured prediction.
Torch-Struct includes a broad collection of probabilistic structures accessed through a simple and flexible distribution-based API.
arXiv Detail & Related papers (2020-02-03T16:43:02Z) - stream-learn -- open-source Python library for difficult data stream
batch analysis [0.0]
stream-learn is compatible with scikit-learn and developed for the drifting and imbalanced data stream analysis.
Main component is a stream generator, which allows to produce a synthetic data stream.
In addition, estimators adapted for data stream classification have been implemented.
arXiv Detail & Related papers (2020-01-29T20:15:09Z) - OPFython: A Python-Inspired Optimum-Path Forest Classifier [68.8204255655161]
This paper proposes a Python-based Optimum-Path Forest framework, denoted as OPFython.
As OPFython is a Python-based library, it provides a more friendly environment and a faster prototyping workspace than the C language.
arXiv Detail & Related papers (2020-01-28T15:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.