Squeezing Backbone Feature Distributions to the Max for Efficient
Few-Shot Learning
- URL: http://arxiv.org/abs/2110.09446v1
- Date: Mon, 18 Oct 2021 16:29:17 GMT
- Title: Squeezing Backbone Feature Distributions to the Max for Efficient
Few-Shot Learning
- Authors: Yuqing Hu, Vincent Gripon, St\'ephane Pateux
- Abstract summary: Few-shot classification is a challenging problem due to the uncertainty caused by using few labelled samples.
We propose a novel transfer-based method which aims at processing the feature vectors so that they become closer to Gaussian-like distributions.
In the case of transductive few-shot learning where unlabelled test samples are available during training, we also introduce an optimal-transport inspired algorithm to boost even further the achieved performance.
- Score: 3.1153758106426603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot classification is a challenging problem due to the uncertainty
caused by using few labelled samples. In the past few years, many methods have
been proposed with the common aim of transferring knowledge acquired on a
previously solved task, what is often achieved by using a pretrained feature
extractor. Following this vein, in this paper we propose a novel transfer-based
method which aims at processing the feature vectors so that they become closer
to Gaussian-like distributions, resulting in increased accuracy. In the case of
transductive few-shot learning where unlabelled test samples are available
during training, we also introduce an optimal-transport inspired algorithm to
boost even further the achieved performance. Using standardized vision
benchmarks, we show the ability of the proposed methodology to achieve
state-of-the-art accuracy with various datasets, backbone architectures and
few-shot settings.
Related papers
- Enhancing Out-of-Distribution Detection with Multitesting-based Layer-wise Feature Fusion [11.689517005768046]
Out-of-distribution samples may exhibit shifts in local or global features compared to the training distribution.
We propose a novel framework, Multitesting-based Layer-wise Out-of-Distribution (OOD) Detection.
Our scheme effectively enhances the performance of out-of-distribution detection when compared to baseline methods.
arXiv Detail & Related papers (2024-03-16T04:35:04Z) - A Maximum Log-Likelihood Method for Imbalanced Few-Shot Learning Tasks [3.2895195535353308]
We propose a new maximum log-likelihood metric for few-shot architectures.
We demonstrate that the proposed metric achieves superior performance accuracy w.r.t. conventional similarity metrics.
We also show that our algorithm achieves state-of-the-art transductive few-shot performance when the evaluation data is imbalanced.
arXiv Detail & Related papers (2022-11-26T21:31:00Z) - On Measuring the Intrinsic Few-Shot Hardness of Datasets [49.37562545777455]
We show that few-shot hardness may be intrinsic to datasets, for a given pre-trained model.
We propose a simple and lightweight metric called "Spread" that captures the intuition that few-shot learning is made possible.
Our metric better accounts for few-shot hardness compared to existing notions of hardness, and is 8-100x faster to compute.
arXiv Detail & Related papers (2022-11-16T18:53:52Z) - POODLE: Improving Few-shot Learning via Penalizing Out-of-Distribution
Samples [19.311470287767385]
We propose to use out-of-distribution samples, i.e., unlabeled samples coming from outside the target classes, to improve few-shot learning.
Our approach is simple to implement, agnostic to feature extractors, lightweight without any additional cost for pre-training, and applicable to both inductive and transductive settings.
arXiv Detail & Related papers (2022-06-08T18:59:21Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
We present SURF, a semi-supervised reward learning framework that utilizes a large amount of unlabeled samples with data augmentation.
In order to leverage unlabeled samples for reward learning, we infer pseudo-labels of the unlabeled samples based on the confidence of the preference predictor.
Our experiments demonstrate that our approach significantly improves the feedback-efficiency of the preference-based method on a variety of locomotion and robotic manipulation tasks.
arXiv Detail & Related papers (2022-03-18T16:50:38Z) - MetaKernel: Learning Variational Random Features with Limited Labels [120.90737681252594]
Few-shot learning deals with the fundamental and challenging problem of learning from a few annotated samples, while being able to generalize well on new tasks.
We propose meta-learning kernels with random Fourier features for few-shot learning, we call Meta Kernel.
arXiv Detail & Related papers (2021-05-08T21:24:09Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z) - Multi-Scale Positive Sample Refinement for Few-Shot Object Detection [61.60255654558682]
Few-shot object detection (FSOD) helps detectors adapt to unseen classes with few training instances.
We propose a Multi-scale Positive Sample Refinement (MPSR) approach to enrich object scales in FSOD.
MPSR generates multi-scale positive samples as object pyramids and refines the prediction at various scales.
arXiv Detail & Related papers (2020-07-18T09:48:29Z) - CSI: Novelty Detection via Contrastive Learning on Distributionally
Shifted Instances [77.28192419848901]
We propose a simple, yet effective method named contrasting shifted instances (CSI)
In addition to contrasting a given sample with other instances as in conventional contrastive learning methods, our training scheme contrasts the sample with distributionally-shifted augmentations of itself.
Our experiments demonstrate the superiority of our method under various novelty detection scenarios.
arXiv Detail & Related papers (2020-07-16T08:32:56Z) - Leveraging the Feature Distribution in Transfer-based Few-Shot Learning [2.922007656878633]
Few-shot classification is a challenging problem due to the uncertainty caused by using few labelled samples.
We propose a novel transfer-based method that builds on two successive steps: 1) preprocessing the feature vectors so that they become closer to Gaussian-like distributions, and 2) leveraging this preprocessing using an optimal-transport inspired algorithm.
We prove the ability of the proposed methodology to achieve state-of-the-art accuracy with various datasets, backbone architectures and few-shot settings.
arXiv Detail & Related papers (2020-06-06T07:32:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.