Random Feature Approximation for Online Nonlinear Graph Topology
Identification
- URL: http://arxiv.org/abs/2110.09935v1
- Date: Tue, 19 Oct 2021 12:48:12 GMT
- Title: Random Feature Approximation for Online Nonlinear Graph Topology
Identification
- Authors: Rohan Money, Joshin Krishnan, Baltasar Beferull-Lozano
- Abstract summary: We propose a kernel-based algorithm for graph topology estimation.
We exploit the fact that the real-world networks often exhibit sparse topologies.
The experiments conducted on real and synthetic data show that the proposed method outperforms its competitors.
- Score: 7.992550355579789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online topology estimation of graph-connected time series is challenging,
especially since the causal dependencies in many real-world networks are
nonlinear. In this paper, we propose a kernel-based algorithm for graph
topology estimation. The algorithm uses a Fourier-based Random feature
approximation to tackle the curse of dimensionality associated with the kernel
representations. Exploiting the fact that the real-world networks often exhibit
sparse topologies, we propose a group lasso based optimization framework, which
is solve using an iterative composite objective mirror descent method, yielding
an online algorithm with fixed computational complexity per iteration. The
experiments conducted on real and synthetic data show that the proposed method
outperforms its competitors.
Related papers
- Hybrid Top-Down Global Causal Discovery with Local Search for Linear and Nonlinear Additive Noise Models [2.0738462952016232]
Methods based on functional causal models can identify a unique graph, but suffer from the curse of dimensionality or impose strong parametric assumptions.
We propose a novel hybrid approach for global causal discovery in observational data that leverages local causal substructures.
We provide theoretical guarantees for correctness and worst-case time complexities, with empirical validation on synthetic data.
arXiv Detail & Related papers (2024-05-23T12:28:16Z) - Network Topology Inference with Sparsity and Laplacian Constraints [18.447094648361453]
We tackle the network topology by utilizing Laplacian constrained Gaussian graphical models.
We show that an efficient projection algorithm is developed to solve the resulting problem.
arXiv Detail & Related papers (2023-09-02T15:06:30Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - A Differentiable Approach to Combinatorial Optimization using Dataless
Neural Networks [20.170140039052455]
We propose a radically different approach in that no data is required for training the neural networks that produce the solution.
In particular, we reduce the optimization problem to a neural network and employ a dataless training scheme to refine the parameters of the network such that those parameters yield the structure of interest.
arXiv Detail & Related papers (2022-03-15T19:21:31Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Progressive Spatio-Temporal Graph Convolutional Network for
Skeleton-Based Human Action Recognition [97.14064057840089]
We propose a method to automatically find a compact and problem-specific network for graph convolutional networks in a progressive manner.
Experimental results on two datasets for skeleton-based human action recognition indicate that the proposed method has competitive or even better classification performance.
arXiv Detail & Related papers (2020-11-11T09:57:49Z) - Learning Fast Approximations of Sparse Nonlinear Regression [50.00693981886832]
In this work, we bridge the gap by introducing the Threshold Learned Iterative Shrinkage Algorithming (NLISTA)
Experiments on synthetic data corroborate our theoretical results and show our method outperforms state-of-the-art methods.
arXiv Detail & Related papers (2020-10-26T11:31:08Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.