HARPS: An Online POMDP Framework for Human-Assisted Robotic Planning and
Sensing
- URL: http://arxiv.org/abs/2110.10324v4
- Date: Tue, 28 Mar 2023 19:03:33 GMT
- Title: HARPS: An Online POMDP Framework for Human-Assisted Robotic Planning and
Sensing
- Authors: Luke Burks, Hunter M. Ray, Jamison McGinley, Sousheel Vunnam, and
Nisar Ahmed
- Abstract summary: The Human Assisted Robotic Planning and Sensing (HARPS) framework is presented for active semantic sensing and planning in human-robot teams.
This approach lets humans opportunistically impose model structure and extend the range of semantic soft data in uncertain environments.
Simulations of a UAV-enabled target search application in a large-scale partially structured environment show significant improvements in time and belief state estimates.
- Score: 1.3678064890824186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous robots can benefit greatly from human-provided semantic
characterizations of uncertain task environments and states. However, the
development of integrated strategies which let robots model, communicate, and
act on such 'soft data' remains challenging. Here, the Human Assisted Robotic
Planning and Sensing (HARPS) framework is presented for active semantic sensing
and planning in human-robot teams to address these gaps by formally combining
the benefits of online sampling-based POMDP policies, multimodal semantic
interaction, and Bayesian data fusion. This approach lets humans
opportunistically impose model structure and extend the range of semantic soft
data in uncertain environments by sketching and labeling arbitrary landmarks
across the environment. Dynamic updating of the environment model while during
search allows robotic agents to actively query humans for novel and relevant
semantic data, thereby improving beliefs of unknown environments and states for
improved online planning. Simulations of a UAV-enabled target search
application in a large-scale partially structured environment show significant
improvements in time and belief state estimates required for interception
versus conventional planning based solely on robotic sensing. Human subject
studies in the same environment (n = 36) demonstrate an average doubling in
dynamic target capture rate compared to the lone robot case, and highlight the
robustness of active probabilistic reasoning and semantic sensing over a range
of user characteristics and interaction modalities.
Related papers
- Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [55.65482030032804]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
Our approach infers dynamically evolving relation graphs and hypergraphs to capture the evolution of relations, which the trajectory predictor employs to generate future states.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - Semi-Supervised Active Learning for Semantic Segmentation in Unknown
Environments Using Informative Path Planning [27.460481202195012]
Self-supervised and fully supervised active learning methods emerged to improve a robot's vision.
We propose a planning method for semi-supervised active learning of semantic segmentation.
We leverage an adaptive map-based planner guided towards the frontiers of unexplored space with high model uncertainty.
arXiv Detail & Related papers (2023-12-07T16:16:47Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration.
We implement a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions.
The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones.
arXiv Detail & Related papers (2022-05-02T09:21:39Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - Few-Shot Visual Grounding for Natural Human-Robot Interaction [0.0]
We propose a software architecture that segments a target object from a crowded scene, indicated verbally by a human user.
At the core of our system, we employ a multi-modal deep neural network for visual grounding.
We evaluate the performance of the proposed model on real RGB-D data collected from public scene datasets.
arXiv Detail & Related papers (2021-03-17T15:24:02Z) - Leveraging Neural Network Gradients within Trajectory Optimization for
Proactive Human-Robot Interactions [32.57882479132015]
We present a framework that fuses together the interpretability and flexibility of trajectory optimization (TO) with the predictive power of state-of-the-art human trajectory prediction models.
We demonstrate the efficacy of our approach in a multi-agent scenario whereby a robot is required to safely and efficiently navigate through a crowd of up to ten pedestrians.
arXiv Detail & Related papers (2020-12-02T08:43:36Z) - Multimodal Deep Generative Models for Trajectory Prediction: A
Conditional Variational Autoencoder Approach [34.70843462687529]
We provide a self-contained tutorial on a conditional variational autoencoder approach to human behavior prediction.
The goals of this tutorial paper are to review and build a taxonomy of state-of-the-art methods in human behavior prediction.
arXiv Detail & Related papers (2020-08-10T03:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.