SocialVisTUM: An Interactive Visualization Toolkit for Correlated Neural
Topic Models on Social Media Opinion Mining
- URL: http://arxiv.org/abs/2110.10575v2
- Date: Mon, 24 Jul 2023 20:07:07 GMT
- Title: SocialVisTUM: An Interactive Visualization Toolkit for Correlated Neural
Topic Models on Social Media Opinion Mining
- Authors: Gerhard Johann Hagerer, Martin Kirchhoff, Hannah Danner, Robert Pesch,
Mainak Ghosh, Archishman Roy, Jiaxi Zhao, Georg Groh
- Abstract summary: Recent research in opinion mining proposed word embedding-based topic modeling methods.
We show how these methods can be used to display correlated topic models on social media texts using SocialVisTUM.
- Score: 0.07538606213726905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research in opinion mining proposed word embedding-based topic
modeling methods that provide superior coherence compared to traditional topic
modeling. In this paper, we demonstrate how these methods can be used to
display correlated topic models on social media texts using SocialVisTUM, our
proposed interactive visualization toolkit. It displays a graph with topics as
nodes and their correlations as edges. Further details are displayed
interactively to support the exploration of large text collections, e.g.,
representative words and sentences of topics, topic and sentiment
distributions, hierarchical topic clustering, and customizable, predefined
topic labels. The toolkit optimizes automatically on custom data for optimal
coherence. We show a working instance of the toolkit on data crawled from
English social media discussions about organic food consumption. The
visualization confirms findings of a qualitative consumer research study.
SocialVisTUM and its training procedures are accessible online.
Related papers
- Semantic-Driven Topic Modeling Using Transformer-Based Embeddings and Clustering Algorithms [6.349503549199403]
This study introduces an innovative end-to-end semantic-driven topic modeling technique for the topic extraction process.
Our model generates document embeddings using pre-trained transformer-based language models.
Compared to ChatGPT and traditional topic modeling algorithms, our model provides more coherent and meaningful topics.
arXiv Detail & Related papers (2024-09-30T18:15:31Z) - GINopic: Topic Modeling with Graph Isomorphism Network [0.8962460460173959]
We introduce GINopic, a topic modeling framework based on graph isomorphism networks to capture the correlation between words.
We demonstrate the effectiveness of GINopic compared to existing topic models and highlight its potential for advancing topic modeling.
arXiv Detail & Related papers (2024-04-02T17:18:48Z) - The Geometric Structure of Topic Models [0.0]
Despite their widespread use in research and application, an in-depth analysis of topic models is still an open research topic.
We propose an incidence-geometric method for deriving an ordinal structure from flat topic models.
We present a new visualization paradigm for concept hierarchies based on ordinal motifs.
arXiv Detail & Related papers (2024-03-06T10:53:51Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - Knowledge-Aware Bayesian Deep Topic Model [50.58975785318575]
We propose a Bayesian generative model for incorporating prior domain knowledge into hierarchical topic modeling.
Our proposed model efficiently integrates the prior knowledge and improves both hierarchical topic discovery and document representation.
arXiv Detail & Related papers (2022-09-20T09:16:05Z) - TopicNet: Semantic Graph-Guided Topic Discovery [51.71374479354178]
Existing deep hierarchical topic models are able to extract semantically meaningful topics from a text corpus in an unsupervised manner.
We introduce TopicNet as a deep hierarchical topic model that can inject prior structural knowledge as an inductive bias to influence learning.
arXiv Detail & Related papers (2021-10-27T09:07:14Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
We crowdsource four new datasets on diverse online conversation forms of news comments, discussion forums, community question answering forums, and email threads.
We benchmark state-of-the-art models on our datasets and analyze characteristics associated with the data.
arXiv Detail & Related papers (2021-06-01T22:17:13Z) - Matching Visual Features to Hierarchical Semantic Topics for Image
Paragraph Captioning [50.08729005865331]
This paper develops a plug-and-play hierarchical-topic-guided image paragraph generation framework.
To capture the correlations between the image and text at multiple levels of abstraction, we design a variational inference network.
To guide the paragraph generation, the learned hierarchical topics and visual features are integrated into the language model.
arXiv Detail & Related papers (2021-05-10T06:55:39Z) - GRADE: Automatic Graph-Enhanced Coherence Metric for Evaluating
Open-Domain Dialogue Systems [133.13117064357425]
We propose a new evaluation metric GRADE, which stands for Graph-enhanced Representations for Automatic Dialogue Evaluation.
Specifically, GRADE incorporates both coarse-grained utterance-level contextualized representations and fine-grained topic-level graph representations to evaluate dialogue coherence.
Experimental results show that our GRADE significantly outperforms other state-of-the-art metrics on measuring diverse dialogue models.
arXiv Detail & Related papers (2020-10-08T14:07:32Z) - Keyword Assisted Topic Models [0.0]
We show that providing a small number of keywords can substantially enhance the measurement performance of topic models.
KeyATM provides more interpretable results, has better document classification performance, and is less sensitive to the number of topics than the standard topic models.
arXiv Detail & Related papers (2020-04-13T14:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.