Improving the Deployment of Recycling Classification through Efficient
Hyper-Parameter Analysis
- URL: http://arxiv.org/abs/2110.11043v2
- Date: Fri, 22 Oct 2021 14:40:04 GMT
- Title: Improving the Deployment of Recycling Classification through Efficient
Hyper-Parameter Analysis
- Authors: Mazin Abdulmahmood and Ryan Grammenos
- Abstract summary: This paper develops a more efficient variant of WasteNet, a collaborative recycling classification model.
The newly developed model scores a test-set accuracy of 95.8% with a real world accuracy of 95%, a 14% increase over the original.
Our acceleration pipeline boosted model throughput by 750% to 24 inferences per second on the Jetson Nano embedded device.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paradigm of automated waste classification has recently seen a shift in
the domain of interest from conventional image processing techniques to
powerful computer vision algorithms known as convolutional neural networks
(CNN). Historically, CNNs have demonstrated a strong dependency on powerful
hardware for real-time classification, yet the need for deployment on weaker
embedded devices is greater than ever. The work in this paper proposes a
methodology for reconstructing and tuning conventional image classification
models, using EfficientNets, to decrease their parameterisation with no
trade-off in model accuracy and develops a pipeline through TensorRT for
accelerating such models to run at real-time on an NVIDIA Jetson Nano embedded
device. The train-deployment discrepancy, relating how poor data augmentation
leads to a discrepancy in model accuracy between training and deployment, is
often neglected in many papers and thus the work is extended by analysing and
evaluating the impact real world perturbations had on model accuracy once
deployed. The scope of the work concerns developing a more efficient variant of
WasteNet, a collaborative recycling classification model. The newly developed
model scores a test-set accuracy of 95.8% with a real world accuracy of 95%, a
14% increase over the original. Our acceleration pipeline boosted model
throughput by 750% to 24 inferences per second on the Jetson Nano and real-time
latency of the system was verified through servomotor latency analysis.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - A Cost-Aware Approach to Adversarial Robustness in Neural Networks [1.622320874892682]
We propose using accelerated failure time models to measure the effect of hardware choice, batch size, number of epochs, and test-set accuracy.
We evaluate several GPU types and use the Tree Parzen Estimator to maximize model robustness and minimize model run-time simultaneously.
arXiv Detail & Related papers (2024-09-11T20:43:59Z) - Accelerating Deep Neural Networks via Semi-Structured Activation
Sparsity [0.0]
Exploiting sparsity in the network's feature maps is one of the ways to reduce its inference latency.
We propose a solution to induce semi-structured activation sparsity exploitable through minor runtime modifications.
Our approach yields a speed improvement of $1.25 times$ with a minimal accuracy drop of $1.1%$ for the ResNet18 model on the ImageNet dataset.
arXiv Detail & Related papers (2023-09-12T22:28:53Z) - From Environmental Sound Representation to Robustness of 2D CNN Models
Against Adversarial Attacks [82.21746840893658]
This paper investigates the impact of different standard environmental sound representations (spectrograms) on the recognition performance and adversarial attack robustness of a victim residual convolutional neural network.
We show that while the ResNet-18 model trained on DWT spectrograms achieves a high recognition accuracy, attacking this model is relatively more costly for the adversary.
arXiv Detail & Related papers (2022-04-14T15:14:08Z) - Load-balanced Gather-scatter Patterns for Sparse Deep Neural Networks [20.374784902476318]
Pruning, as a method to introduce zeros to model weights, has shown to be an effective method to provide good trade-offs between model accuracy and computation efficiency.
Some modern processors are equipped with fast on-chip scratchpad memories and gather/scatter engines that perform indirect load and store operations on such memories.
In this work, we propose a set of novel sparse patterns, named gather-scatter (GS) patterns, to utilize the scratchpad memories and gather/scatter engines to speed up neural network inferences.
arXiv Detail & Related papers (2021-12-20T22:55:45Z) - Real-time Human Detection Model for Edge Devices [0.0]
Convolutional Neural Networks (CNNs) have replaced traditional feature extraction and machine learning models in detection and classification tasks.
Lightweight CNN models have been recently introduced for real-time tasks.
This paper suggests a CNN-based lightweight model that can fit on a limited edge device such as Raspberry Pi.
arXiv Detail & Related papers (2021-11-20T18:42:17Z) - Churn Reduction via Distillation [54.5952282395487]
We show an equivalence between training with distillation using the base model as the teacher and training with an explicit constraint on the predictive churn.
We then show that distillation performs strongly for low churn training against a number of recent baselines.
arXiv Detail & Related papers (2021-06-04T18:03:31Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
This paper proposes LaMI (Latency Model Inpainting), a novel framework to generate a comprehensive-temporal quality framework for wireless access latency of connected vehicles.
LaMI adopts the idea from image inpainting and synthesizing and can reconstruct the missing latency samples by a two-step procedure.
In particular, it first discovers the spatial correlation between samples collected in various regions using a patching-based approach and then feeds the original and highly correlated samples into a Varienational Autocoder (VAE)
arXiv Detail & Related papers (2020-03-16T03:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.