Quantum-limited determination of refractive index difference by means of
entanglement
- URL: http://arxiv.org/abs/2110.11118v1
- Date: Thu, 21 Oct 2021 13:07:27 GMT
- Title: Quantum-limited determination of refractive index difference by means of
entanglement
- Authors: Mattis Reisner, Florent Mazeas, Romain Dauliat, Baptiste Leconte,
Djeylan Aktas, Rachel Cannon, Philippe Roy, Raphael Jamier, Gregory Sauder,
Florian Kaiser, S\'ebastien Tanzilli, Laurent Labont\'e
- Abstract summary: We exploit a quantum optical method based on low-coherence Hong-Ou-Mandel interferometry to perform measurements of the refractive index difference.
The precision enhancement reached with this method is benchmarked with a classical method based on single photon interferometry.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Shaping single-mode operation in high-power fibres requires a precise
knowledge of the gain-medium optical properties. This requires accurate
measurements of the refractive index differences ($\Delta$n) between the core
and the cladding of the fiber. We exploit a quantum optical method based on
low-coherence Hong-Ou-Mandel interferometry to perform practical measurements
of the refractive index difference using broadband energy-time entangled
photons. The precision enhancement reached with this method is benchmarked with
a classical method based on single photon interferometry. We show in classical
regime an improvement by an order of magnitude of the precision compared to
already reported classical methods. Strikingly, in the quantum regime, we
demonstrate an extra factor of 4 on the accuracy enhancement, exhibiting a
state-of-the-art $\Delta$n precision of $6.10^{-7}$. This work sets the quantum
photonics metrology as a powerful characterization tool that should enable a
faster and reliable design of materials dedicated to light amplification.
Related papers
- Deterministic Shaping of Quantum Light Statistics [0.0]
Nonclassical states of light are an essential resource for high precision optical techniques.
We show that a class of nonlinear-optical resonators can transform many-photon wavefunctions to produce structured states of light.
arXiv Detail & Related papers (2024-03-09T04:37:19Z) - Spatial super-resolution in nanosensing with blinking emitters [79.16635054977068]
We propose a method of spatial resolution enhancement in metrology with blinking fluorescent nanosensors.
We believe that blinking fluorescent sensing agents being complemented with the developed image analysis technique could be utilized routinely in the life science sector.
arXiv Detail & Related papers (2024-02-27T10:38:05Z) - Fast measurement of group index variation with ultimate precision using
Hong-Ou-Mandel interferometry [3.6293956720749425]
Hong-Ou-Mandel interferometry has emerged as a valuable tool for quantum sensing applications.
We optimize optical delay measurements in a time-efficient manner.
Measurements maintain fast detection and high photon counts.
arXiv Detail & Related papers (2024-01-22T11:17:46Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Plug-and-play measurement of chromatic dispersion by means of two-photon
interferometry [0.0]
Two-photon interferometry underpins the possibility of entanglement to probe optical materials with unprecedented levels of precision and accuracy.
We report a novel quantum-based method for measuring the frequency dependence of the velocity in a transparent medium.
This technique, using energy-time entangled photons, allows straightforward access to CD value from the visibility of two-photon fringes recorded in a free evolution regime.
arXiv Detail & Related papers (2023-05-25T13:22:26Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Estimating the concentration of chiral media with bright squeezed light [77.34726150561087]
We quantify the performance of Gaussian probes in estimating the concentration of chiral analytes.
Four-fold precision enhancement is achievable using state-of-the-art squeezing levels and intensity measurements.
arXiv Detail & Related papers (2022-08-21T17:18:10Z) - Quantifying n-photon indistinguishability with a cyclic integrated
interferometer [40.24757332810004]
We report on a universal method to measure the genuine indistinguishability of n-photons.
Our approach relies on a low-depth cyclic multiport interferometer with N = 2n modes.
We experimentally demonstrate this technique for a 8-mode integrated interferometer fabricated using femtosecond laser micromachining.
arXiv Detail & Related papers (2022-01-31T16:30:52Z) - Quantum Fisher Information Bounds on Precision Limits of Circular
Dichroism [1.2891210250935146]
Circular dichroism (CD) is a widely used technique for investigating optically chiral molecules, especially for biomolecules.
We develop quantum Fisher information matrix (QFIM) for precision estimates of the circular dichroism and the optical rotary dispersion for a variety of input quantum states of light.
arXiv Detail & Related papers (2021-08-31T16:52:15Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.