Categorizing Items with Short and Noisy Descriptions using Ensembled
Transferred Embeddings
- URL: http://arxiv.org/abs/2110.11431v1
- Date: Thu, 21 Oct 2021 18:57:40 GMT
- Title: Categorizing Items with Short and Noisy Descriptions using Ensembled
Transferred Embeddings
- Authors: Yonatan Hadar and Erez Shmueli
- Abstract summary: Ensembled Transferred Embeddings (ETE) is a novel learning framework for item categorization.
We show that ETE outperforms state-of-the-art item categorization methods on a large-scale real-world dataset provided to us by PayPal.
- Score: 6.282068591820945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Item categorization is a machine learning task which aims at classifying
e-commerce items, typically represented by textual attributes, to their most
suitable category from a predefined set of categories. An accurate item
categorization system is essential for improving both the user experience and
the operational processes of the company. In this work, we focus on item
categorization settings in which the textual attributes representing items are
noisy and short, and labels (i.e., accurate classification of items into
categories) are not available. In order to cope with such settings, we propose
a novel learning framework, Ensembled Transferred Embeddings (ETE), which
relies on two key ideas: 1) labeling a relatively small sample of the target
dataset, in a semi-automatic process, and 2) leveraging other datasets from
related domains or related tasks that are large-scale and labeled, to extract
"transferable embeddings". Evaluation of ETE on a large-scale real-world
dataset provided to us by PayPal, shows that it significantly outperforms
traditional as well as state-of-the-art item categorization methods.
Related papers
- Exploring Fine-grained Retail Product Discrimination with Zero-shot Object Classification Using Vision-Language Models [50.370043676415875]
In smart retail applications, the large number of products and their frequent turnover necessitate reliable zero-shot object classification methods.
We introduce the MIMEX dataset, comprising 28 distinct product categories.
We benchmark the zero-shot object classification performance of state-of-the-art vision-language models (VLMs) on the proposed MIMEX dataset.
arXiv Detail & Related papers (2024-09-23T12:28:40Z) - Hierarchical Query Classification in E-commerce Search [38.67034103433015]
E-commerce platforms typically store and structure product information and search data in a hierarchy.
Efficiently categorizing user search queries into a similar hierarchical structure is paramount in enhancing user experience on e-commerce platforms as well as news curation and academic research.
The inherent complexity of hierarchical query classification is compounded by two primary challenges: (1) the pronounced class imbalance that skews towards dominant categories, and (2) the inherent brevity and ambiguity of search queries that hinder accurate classification.
arXiv Detail & Related papers (2024-03-09T21:55:55Z) - Multi-output Headed Ensembles for Product Item Classification [0.9053163124987533]
We propose a deep learning based classification model framework for e-commerce catalogs.
We show improvements against robust industry standard baseline models.
We also propose a novel way to evaluate model performance using user sessions.
arXiv Detail & Related papers (2023-07-29T01:23:36Z) - Description-Enhanced Label Embedding Contrastive Learning for Text
Classification [65.01077813330559]
Self-Supervised Learning (SSL) in model learning process and design a novel self-supervised Relation of Relation (R2) classification task.
Relation of Relation Learning Network (R2-Net) for text classification, in which text classification and R2 classification are treated as optimization targets.
external knowledge from WordNet to obtain multi-aspect descriptions for label semantic learning.
arXiv Detail & Related papers (2023-06-15T02:19:34Z) - Association Graph Learning for Multi-Task Classification with Category
Shifts [68.58829338426712]
We focus on multi-task classification, where related classification tasks share the same label space and are learned simultaneously.
We learn an association graph to transfer knowledge among tasks for missing classes.
Our method consistently performs better than representative baselines.
arXiv Detail & Related papers (2022-10-10T12:37:41Z) - Label Semantic Aware Pre-training for Few-shot Text Classification [53.80908620663974]
We propose Label Semantic Aware Pre-training (LSAP) to improve the generalization and data efficiency of text classification systems.
LSAP incorporates label semantics into pre-trained generative models (T5 in our case) by performing secondary pre-training on labeled sentences from a variety of domains.
arXiv Detail & Related papers (2022-04-14T17:33:34Z) - Out-of-Category Document Identification Using Target-Category Names as
Weak Supervision [64.671654559798]
Out-of-category detection aims to distinguish documents according to their semantic relevance to the inlier (or target) categories.
We present an out-of-category detection framework, which effectively measures how confidently each document belongs to one of the target categories.
arXiv Detail & Related papers (2021-11-24T21:01:25Z) - MotifClass: Weakly Supervised Text Classification with Higher-order
Metadata Information [47.44278057062421]
We study the problem of weakly supervised text classification, which aims to classify text documents into a set of pre-defined categories with category surface names only.
To be specific, we model the relationships between documents and metadata via a heterogeneous information network.
We propose a novel framework, named MotifClass, which selects category-indicative motif instances, retrieves and generates pseudo-labeled training samples based on category names and indicative motif instances.
arXiv Detail & Related papers (2021-11-07T07:39:10Z) - Automatic Validation of Textual Attribute Values in E-commerce Catalog
by Learning with Limited Labeled Data [61.789797281676606]
We propose a novel meta-learning latent variable approach, called MetaBridge.
It can learn transferable knowledge from a subset of categories with limited labeled data.
It can capture the uncertainty of never-seen categories with unlabeled data.
arXiv Detail & Related papers (2020-06-15T21:31:05Z) - Minimally Supervised Categorization of Text with Metadata [40.13841133991089]
We propose MetaCat, a minimally supervised framework to categorize text with metadata.
We develop a generative process describing the relationships between words, documents, labels, and metadata.
Based on the same generative process, we synthesize training samples to address the bottleneck of label scarcity.
arXiv Detail & Related papers (2020-05-01T21:42:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.