Depth-only Object Tracking
- URL: http://arxiv.org/abs/2110.11679v1
- Date: Fri, 22 Oct 2021 09:59:31 GMT
- Title: Depth-only Object Tracking
- Authors: Song Yan and Jinyu Yang and Ales Leonardis and Joni-Kristian
Kamarainen
- Abstract summary: We study how far D-only tracking can go if trained with large amounts of depth data.
We train a "Depth-DiMP" from the scratch with the generated data and fine-tune it with the available small RGBD tracking datasets.
The depth-only DiMP achieves good accuracy in depth-only tracking and combined with the original RGB DiMP the end-to-end trained RGBD-DiMP outperforms the recent VOT 2020 RGBD winners.
- Score: 23.27677106839962
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Depth (D) indicates occlusion and is less sensitive to illumination changes,
which make depth attractive modality for Visual Object Tracking (VOT). Depth is
used in RGBD object tracking where the best trackers are deep RGB trackers with
additional heuristic using depth maps. There are two potential reasons for the
heuristics: 1) the lack of large RGBD tracking datasets to train deep RGBD
trackers and 2) the long-term evaluation protocol of VOT RGBD that benefits
from heuristics such as depth-based occlusion detection. In this work, we study
how far D-only tracking can go if trained with large amounts of depth data. To
compensate the lack of depth data, we generate depth maps for tracking. We
train a "Depth-DiMP" from the scratch with the generated data and fine-tune it
with the available small RGBD tracking datasets. The depth-only DiMP achieves
good accuracy in depth-only tracking and combined with the original RGB DiMP
the end-to-end trained RGBD-DiMP outperforms the recent VOT 2020 RGBD winners.
Related papers
- Learning Dual-Fused Modality-Aware Representations for RGBD Tracking [67.14537242378988]
Compared with the traditional RGB object tracking, the addition of the depth modality can effectively solve the target and background interference.
Some existing RGBD trackers use the two modalities separately and thus some particularly useful shared information between them is ignored.
We propose a novel Dual-fused Modality-aware Tracker (termed DMTracker) which aims to learn informative and discriminative representations of the target objects for robust RGBD tracking.
arXiv Detail & Related papers (2022-11-06T07:59:07Z) - RGBD1K: A Large-scale Dataset and Benchmark for RGB-D Object Tracking [30.448658049744775]
Given a limited amount of annotated RGB-D tracking data, most state-of-the-art RGB-D trackers are simple extensions of high-performance RGB-only trackers.
To address the dataset deficiency issue, a new RGB-D dataset named RGBD1K is released in this paper.
arXiv Detail & Related papers (2022-08-21T03:07:36Z) - RGBD Object Tracking: An In-depth Review [89.96221353160831]
We firstly review RGBD object trackers from different perspectives, including RGBD fusion, depth usage, and tracking framework.
We benchmark a representative set of RGBD trackers, and give detailed analyses based on their performances.
arXiv Detail & Related papers (2022-03-26T18:53:51Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
We propose a novel multi-task and multi-modal filtered transformer (MMFT) network for RGB-D salient object detection (SOD)
Specifically, we unify three complementary tasks: depth estimation, salient object detection and contour estimation. The multi-task mechanism promotes the model to learn the task-aware features from the auxiliary tasks.
Experiments show that it not only significantly surpasses the depth-based RGB-D SOD methods on multiple datasets, but also precisely predicts a high-quality depth map and salient contour at the same time.
arXiv Detail & Related papers (2022-03-09T17:20:18Z) - Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images [89.81919625224103]
Training deep models for RGB-D salient object detection (SOD) often requires a large number of labeled RGB-D images.
We present a Dual-Semi RGB-D Salient Object Detection Network (DS-Net) to leverage unlabeled RGB images for boosting RGB-D saliency detection.
arXiv Detail & Related papers (2022-01-01T03:02:27Z) - DepthTrack : Unveiling the Power of RGBD Tracking [29.457114656913944]
This work introduces a new RGBD tracking dataset - Depth-Track.
It has twice as many sequences (200) and scene types (40) than in the largest existing dataset.
The average length of the sequences (1473), the number of deformable objects (16) and the number of tracking attributes (15) have been increased.
arXiv Detail & Related papers (2021-08-31T16:42:38Z) - Synergistic saliency and depth prediction for RGB-D saliency detection [76.27406945671379]
Existing RGB-D saliency datasets are small, which may lead to overfitting and limited generalization for diverse scenarios.
We propose a semi-supervised system for RGB-D saliency detection that can be trained on smaller RGB-D saliency datasets without saliency ground truth.
arXiv Detail & Related papers (2020-07-03T14:24:41Z) - Is Depth Really Necessary for Salient Object Detection? [50.10888549190576]
We make the first attempt in realizing an unified depth-aware framework with only RGB information as input for inference.
Not only surpasses the state-of-the-art performances on five public RGB SOD benchmarks, but also surpasses the RGBD-based methods on five benchmarks by a large margin.
arXiv Detail & Related papers (2020-05-30T13:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.