Single Morphing Attack Detection using Feature Selection and
Visualisation based on Mutual Information
- URL: http://arxiv.org/abs/2110.13552v1
- Date: Tue, 26 Oct 2021 10:27:06 GMT
- Title: Single Morphing Attack Detection using Feature Selection and
Visualisation based on Mutual Information
- Authors: Juan Tapia and Christoph Busch
- Abstract summary: This paper explores features extracted from intensity, shape, texture, and proposes a feature selection stage based on the Mutual Information filter.
The eyes and nose are identified as the most critical areas to be analysed.
- Score: 13.725021925072603
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Face morphing attack detection is a challenging task. Automatic
classification methods and manual inspection are realised in automatic border
control gates to detect morphing attacks. Understanding how a machine learning
system can detect morphed faces and the most relevant facial areas is crucial.
Those relevant areas contain texture signals that allow us to separate the bona
fide and the morph images. Also, it helps in the manual examination to detect a
passport generated with morphed images. This paper explores features extracted
from intensity, shape, texture, and proposes a feature selection stage based on
the Mutual Information filter to select the most relevant and less redundant
features. This selection allows us to reduce the workload and know the exact
localisation of such areas to understand the morphing impact and create a
robust classifier. The best results were obtained for the method based on
Conditional Mutual Information and Shape features using only 500 features for
FERET images and 800 features for FRGCv2 images from 1,048 features available.
The eyes and nose are identified as the most critical areas to be analysed.
Related papers
- UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Learning Expressive And Generalizable Motion Features For Face Forgery
Detection [52.54404879581527]
We propose an effective sequence-based forgery detection framework based on an existing video classification method.
To make the motion features more expressive for manipulation detection, we propose an alternative motion consistency block.
We make a general video classification network achieve promising results on three popular face forgery datasets.
arXiv Detail & Related papers (2024-03-08T09:25:48Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
Deepfake detection refers to detecting artificially generated or edited faces in images or videos.
We propose a novel Deepfake detection framework named DeepFidelity to adaptively distinguish real and fake faces.
arXiv Detail & Related papers (2023-12-07T07:19:45Z) - Analyzing eyebrow region for morphed image detection [4.879461135691896]
The proposed method is based on analyzing the frequency content of the eyebrow region.
The findings suggest that the proposed method can serve as a valuable tool in morphed image detection.
arXiv Detail & Related papers (2023-10-30T06:11:27Z) - Face Feature Visualisation of Single Morphing Attack Detection [13.680968065638108]
This paper proposes an explainable visualisation of different face feature extraction algorithms.
It enables the detection of bona fide and morphing images for single morphing attack detection.
The visualisation may help to develop a Graphical User Interface for border policies.
arXiv Detail & Related papers (2023-04-25T17:51:23Z) - MorDeephy: Face Morphing Detection Via Fused Classification [0.0]
We introduce a novel deep learning strategy for a single image face morphing detection.
It is directed onto learning the deep facial features, which carry information about the authenticity of these features.
Our method, which we call MorDeephy, achieved the state of the art performance and demonstrated a prominent ability for generalising the task of morphing detection to unseen scenarios.
arXiv Detail & Related papers (2022-08-05T11:39:22Z) - Towards Intrinsic Common Discriminative Features Learning for Face
Forgery Detection using Adversarial Learning [59.548960057358435]
We propose a novel method which utilizes adversarial learning to eliminate the negative effect of different forgery methods and facial identities.
Our face forgery detection model learns to extract common discriminative features through eliminating the effect of forgery methods and facial identities.
arXiv Detail & Related papers (2022-07-08T09:23:59Z) - Face Morphing Attack Detection Using Privacy-Aware Training Data [0.991629944808926]
Images of morphed faces pose a serious threat to face recognition--based security systems.
Modern detection algorithms learn to identify such morphing attacks using authentic images of real individuals.
This approach raises various privacy concerns and limits the amount of publicly available training data.
arXiv Detail & Related papers (2022-07-02T19:00:48Z) - Detect and Locate: A Face Anti-Manipulation Approach with Semantic and
Noise-level Supervision [67.73180660609844]
We propose a conceptually simple but effective method to efficiently detect forged faces in an image.
The proposed scheme relies on a segmentation map that delivers meaningful high-level semantic information clues about the image.
The proposed model achieves state-of-the-art detection accuracy and remarkable localization performance.
arXiv Detail & Related papers (2021-07-13T02:59:31Z) - Attention Aware Wavelet-based Detection of Morphed Face Images [18.22557507385582]
We propose a wavelet-based morph detection methodology which adopts an end-to-end trainable soft attention mechanism.
We evaluate performance of the proposed framework using three datasets, VISAPP17, LMA, and MorGAN.
arXiv Detail & Related papers (2021-06-29T19:29:19Z) - Deep Texture-Aware Features for Camouflaged Object Detection [69.84122372541506]
This paper formulates texture-aware refinement modules to learn the texture-aware features in a deep convolutional neural network.
We evaluate our network on the benchmark dataset for camouflaged object detection both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-02-05T04:38:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.