High-dimensional multi-trait GWAS by reverse prediction of genotypes
- URL: http://arxiv.org/abs/2111.00108v1
- Date: Fri, 29 Oct 2021 22:34:35 GMT
- Title: High-dimensional multi-trait GWAS by reverse prediction of genotypes
- Authors: Muhammad Ammar Malik, Adriaan-Alexander Ludl, Tom Michoel
- Abstract summary: Reverse regression is a promising approach to perform multi-trait GWAS in high-dimensional settings.
We analyzed different machine learning methods for reverse regression in multi-trait GWAS.
Model feature coefficients correlated with the strength of association between variants and individual traits, and were predictive of true trans-eQTL target genes.
- Score: 3.441021278275805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-trait genome-wide association studies (GWAS) use multi-variate
statistical methods to identify associations between genetic variants and
multiple correlated traits simultaneously, and have higher statistical power
than independent univariate analysis of traits. Reverse regression, where
genotypes of genetic variants are regressed on multiple traits simultaneously,
has emerged as a promising approach to perform multi-trait GWAS in
high-dimensional settings where the number of traits exceeds the number of
samples. We extended this approach and analyzed different machine learning
methods (ridge regression, random forests and support vector machines)for
reverse regression in multi-trait GWAS, using genotypes, gene expression data
and ground-truth transcriptional regulatory networks from the DREAM5 SysGen
Challenge and from a cross between two yeast strains to evaluate methods. We
found that genotype prediction performance, in terms of root mean squared error
(RMSE), allowed to distinguish between genomic regions with high and low
transcriptional activity. Moreover, model feature coefficients correlated with
the strength of association between variants and individual traits, and were
predictive of true trans-eQTL target genes, with complementary findings across
methods.
Related papers
- Weighted Diversified Sampling for Efficient Data-Driven Single-Cell Gene-Gene Interaction Discovery [56.622854875204645]
We present an innovative approach utilizing data-driven computational tools, leveraging an advanced Transformer model, to unearth gene-gene interactions.
A novel weighted diversified sampling algorithm computes the diversity score of each data sample in just two passes of the dataset.
arXiv Detail & Related papers (2024-10-21T03:35:23Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
We develop a Biological-knowledge enhanced PathGenomic multi-label Transformer to improve genetic mutation prediction performances.
BPGT first establishes a novel gene encoder that constructs gene priors by two carefully designed modules.
BPGT then designs a label decoder that finally performs genetic mutation prediction by two tailored modules.
arXiv Detail & Related papers (2024-06-05T06:42:27Z) - Predicting loss-of-function impact of genetic mutations: a machine
learning approach [0.0]
This paper aims to train machine learning models on the attributes of a genetic mutation to predict LoFtool scores.
These attributes included, but were not limited to, the position of a mutation on a chromosome, changes in amino acids, and changes in codons caused by the mutation.
Models were evaluated using five-fold cross-validated averages of r-squared, mean squared error, root mean squared error, mean absolute error, and explained variance.
arXiv Detail & Related papers (2024-01-26T19:27:38Z) - Multiple Augmented Reduced Rank Regression for Pan-Cancer Analysis [0.0]
We propose multiple augmented reduced rank regression (maRRR), a flexible matrix regression and factorization method.
We consider a structured nuclear norm objective that is motivated by random matrix theory.
We apply maRRR to gene expression data from multiple cancer types (i.e., pan-cancer) from TCGA.
arXiv Detail & Related papers (2023-08-30T21:40:58Z) - Genetic heterogeneity analysis using genetic algorithm and network
science [2.6166087473624318]
Genome-wide association studies (GWAS) can identify disease susceptible genetic variables.
Genetic variables intertwined with genetic effects often exhibit lower effect-size.
This paper introduces a novel feature selection mechanism for GWAS, named Feature Co-selection Network (FCSNet)
arXiv Detail & Related papers (2023-08-12T01:28:26Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - rfPhen2Gen: A machine learning based association study of brain imaging
phenotypes to genotypes [71.1144397510333]
We learned machine learning models to predict SNPs using 56 brain imaging QTs.
SNPs within the known Alzheimer disease (AD) risk gene APOE had lowest RMSE for lasso and random forest.
Random forests identified additional SNPs that were not prioritized by the linear models but are known to be associated with brain-related disorders.
arXiv Detail & Related papers (2022-03-31T20:15:22Z) - Multi-modal Self-supervised Pre-training for Regulatory Genome Across
Cell Types [75.65676405302105]
We propose a simple yet effective approach for pre-training genome data in a multi-modal and self-supervised manner, which we call GeneBERT.
We pre-train our model on the ATAC-seq dataset with 17 million genome sequences.
arXiv Detail & Related papers (2021-10-11T12:48:44Z) - Two-step penalised logistic regression for multi-omic data with an
application to cardiometabolic syndrome [62.997667081978825]
We implement a two-step approach to multi-omic logistic regression in which variable selection is performed on each layer separately.
Our approach should be preferred if the goal is to select as many relevant predictors as possible.
Our proposed approach allows us to identify features that characterise cardiometabolic syndrome at the molecular level.
arXiv Detail & Related papers (2020-08-01T10:36:27Z) - Handling highly correlated genes in prediction analysis of genomic
studies [0.0]
High correlation among genes introduces technical problems, such as multi-collinearity issues, leading to unreliable prediction models.
We propose a grouping algorithm, which treats highly correlated genes as a group and uses their common pattern to represent the group's biological signal in feature selection.
Our proposed grouping method has two advantages. First, using the gene group's common patterns makes the prediction more robust and reliable under condition change.
arXiv Detail & Related papers (2020-07-05T22:14:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.