Bayesian optimization of distributed neurodynamical controller models
for spatial navigation
- URL: http://arxiv.org/abs/2111.00599v1
- Date: Sun, 31 Oct 2021 21:43:06 GMT
- Title: Bayesian optimization of distributed neurodynamical controller models
for spatial navigation
- Authors: Armin Hadzic, Grace M. Hwang, Kechen Zhang, Kevin M. Schultz and
Joseph D. Monaco
- Abstract summary: We introduce the NeuroSwarms controller, in which agent-based interactions are modeled by analogy to neuronal network interactions.
This complexity precludes linear analyses of stability, controllability, and performance typically used to study conventional swarm models.
We present a framework for tuning dynamical controller models of autonomous multi-agent systems based on Bayesian Optimization.
- Score: 1.9249287163937971
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamical systems models for controlling multi-agent swarms have demonstrated
advances toward resilient, decentralized navigation algorithms. We previously
introduced the NeuroSwarms controller, in which agent-based interactions were
modeled by analogy to neuronal network interactions, including attractor
dynamics and phase synchrony, that have been theorized to operate within
hippocampal place-cell circuits in navigating rodents. This complexity
precludes linear analyses of stability, controllability, and performance
typically used to study conventional swarm models. Further, tuning dynamical
controllers by hand or grid search is often inadequate due to the complexity of
objectives, dimensionality of model parameters, and computational costs of
simulation-based sampling. Here, we present a framework for tuning dynamical
controller models of autonomous multi-agent systems based on Bayesian
Optimization (BayesOpt). Our approach utilizes a task-dependent objective
function to train Gaussian Processes (GPs) as surrogate models to achieve
adaptive and efficient exploration of a dynamical controller model's parameter
space. We demonstrate this approach by studying an objective function selecting
for NeuroSwarms behaviors that cooperatively localize and capture spatially
distributed rewards under time pressure. We generalized task performance across
environments by combining scores for simulations in distinct geometries. To
validate search performance, we compared high-dimensional clustering for high-
vs. low-likelihood parameter points by visualizing sample trajectories in
Uniform Manifold Approximation and Projection (UMAP) embeddings. Our findings
show that adaptive, sample-efficient evaluation of the self-organizing
behavioral capacities of complex systems, including dynamical swarm
controllers, can accelerate the translation of neuroscientific theory to
applied domains.
Related papers
- Incremental Few-Shot Adaptation for Non-Prehensile Object Manipulation using Parallelizable Physics Simulators [5.483662156126757]
We propose a novel approach for non-prehensile manipulation which iteratively adapts a physics-based dynamics model for model-predictive control.
We adapt the parameters of the model incrementally with a few examples of robot-object interactions.
We evaluate our few-shot adaptation approach in several object pushing experiments in simulation and with a real robot.
arXiv Detail & Related papers (2024-09-20T05:24:25Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Model-Based Control with Sparse Neural Dynamics [23.961218902837807]
We propose a new framework for integrated model learning and predictive control.
We show that our framework can deliver better closed-loop performance than existing state-of-the-art methods.
arXiv Detail & Related papers (2023-12-20T06:25:02Z) - Data-Driven Model Selections of Second-Order Particle Dynamics via
Integrating Gaussian Processes with Low-Dimensional Interacting Structures [0.9821874476902972]
We focus on the data-driven discovery of a general second-order particle-based model.
We present applications to modeling two real-world fish motion datasets.
arXiv Detail & Related papers (2023-11-01T23:45:15Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Tunable Convolutions with Parametric Multi-Loss Optimization [5.658123802733283]
Behavior of neural networks is irremediably determined by the specific loss and data used during training.
It is often desirable to tune the model at inference time based on external factors such as preferences of the user or dynamic characteristics of the data.
This is especially important to balance the perception-distortion trade-off of ill-posed image-to-image translation tasks.
arXiv Detail & Related papers (2023-04-03T11:36:10Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
We present a novel hybrid model formulation that enables us to identify fully physically consistent inertial parameters of a rigid body dynamics model.
We compare our approach against state-of-the-art inverse dynamics models on a 7 degree of freedom manipulator.
arXiv Detail & Related papers (2022-05-27T07:39:28Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.