SADGA: Structure-Aware Dual Graph Aggregation Network for Text-to-SQL
- URL: http://arxiv.org/abs/2111.00653v1
- Date: Mon, 1 Nov 2021 01:50:28 GMT
- Title: SADGA: Structure-Aware Dual Graph Aggregation Network for Text-to-SQL
- Authors: Ruichu Cai, Jinjie Yuan, Boyan Xu, Zhifeng Hao
- Abstract summary: One of the most challenging problems of Text-to-Graph is how to generalize the trained model to the unseen database schemas.
We propose a Structure-Aware Dual Graph Aggregation Network (SADGA) for cross-domain Text-to-Graph.
We achieve 3rd place on the challenging Text-to-Graph benchmark Spider at the time of writing.
- Score: 29.328698264910596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Text-to-SQL task, aiming to translate the natural language of the
questions into SQL queries, has drawn much attention recently. One of the most
challenging problems of Text-to-SQL is how to generalize the trained model to
the unseen database schemas, also known as the cross-domain Text-to-SQL task.
The key lies in the generalizability of (i) the encoding method to model the
question and the database schema and (ii) the question-schema linking method to
learn the mapping between words in the question and tables/columns in the
database schema. Focusing on the above two key issues, we propose a
Structure-Aware Dual Graph Aggregation Network (SADGA) for cross-domain
Text-to-SQL. In SADGA, we adopt the graph structure to provide a unified
encoding model for both the natural language question and database schema.
Based on the proposed unified modeling, we further devise a structure-aware
aggregation method to learn the mapping between the question-graph and
schema-graph. The structure-aware aggregation method is featured with Global
Graph Linking, Local Graph Linking, and Dual-Graph Aggregation Mechanism. We
not only study the performance of our proposal empirically but also achieved
3rd place on the challenging Text-to-SQL benchmark Spider at the time of
writing.
Related papers
- UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
We introduce a UNIfied benchmark for Text-to-domain systems.
It is composed of publicly available text-to-domain datasets and 29K databases.
Compared to the widely used Spider benchmark, we introduce a threefold increase in SQL patterns.
arXiv Detail & Related papers (2023-05-25T17:19:52Z) - QURG: Question Rewriting Guided Context-Dependent Text-to-SQL Semantic
Parsing [46.05006486399823]
This paper presents QURG, a novel Question Rewriting Guided approach to help the models achieve adequate contextual understanding.
We first train a question rewriting model to complete the current question based on question context, and convert them into a rewriting edit matrix.
We further design a two-stream matrix encoder to jointly model rewriting relations between question and context, and the schema linking relations between natural language and structured schema.
arXiv Detail & Related papers (2023-05-11T08:45:55Z) - Prompting GPT-3.5 for Text-to-SQL with De-semanticization and Skeleton
Retrieval [17.747079214502673]
Text-to- is a task that converts a natural language question into a structured query language () to retrieve information from a database.
In this paper, we propose an LLM-based framework for Text-to- which retrieves helpful demonstration examples to prompt LLMs.
We design a de-semanticization mechanism that extracts question skeletons, allowing us to retrieve similar examples based on their structural similarity.
arXiv Detail & Related papers (2023-04-26T06:02:01Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
The goal of text-to-corpora parsing is to convert a natural language (NL) question to its corresponding structured query language () based on the evidences provided by databases.
Deep neural networks have significantly advanced this task by neural generation models, which automatically learn a mapping function from an input NL question to an output query.
arXiv Detail & Related papers (2022-08-29T14:24:13Z) - Semantic Enhanced Text-to-SQL Parsing via Iteratively Learning Schema
Linking Graph [6.13728903057727]
The generalizability to new databases is of vital importance to Text-to- systems which aim to parse human utterances intosql statements.
In this paper, we propose a framework named IS ESL to iteratively build a enhanced semantic schema-linking graph between question tokens and database schemas.
Extensive experiments on three benchmarks demonstrate that IS ESL could consistently outperform the baselines and further investigations show its generalizability and robustness.
arXiv Detail & Related papers (2022-08-08T03:59:33Z) - Proton: Probing Schema Linking Information from Pre-trained Language
Models for Text-to-SQL Parsing [66.55478402233399]
We propose a framework to elicit relational structures via a probing procedure based on Poincar'e distance metric.
Compared with commonly-used rule-based methods for schema linking, we found that probing relations can robustly capture semantic correspondences.
Our framework sets new state-of-the-art performance on three benchmarks.
arXiv Detail & Related papers (2022-06-28T14:05:25Z) - Dual Reader-Parser on Hybrid Textual and Tabular Evidence for Open
Domain Question Answering [78.9863753810787]
A large amount of world's knowledge is stored in structured databases.
query languages can answer questions that require complex reasoning, as well as offering full explainability.
arXiv Detail & Related papers (2021-08-05T22:04:13Z) - ShadowGNN: Graph Projection Neural Network for Text-to-SQL Parser [36.12921337235763]
We propose a new architecture, ShadowGNN, which processes schemas at abstract and semantic levels.
On the challenging Text-to-Spider benchmark, empirical results show that ShadowGNN outperforms state-of-the-art models.
arXiv Detail & Related papers (2021-04-10T05:48:28Z) - Bridging Textual and Tabular Data for Cross-Domain Text-to-SQL Semantic
Parsing [110.97778888305506]
BRIDGE represents the question and DB schema in a tagged sequence where a subset of the fields are augmented with cell values mentioned in the question.
BRIDGE attained state-of-the-art performance on popular cross-DB text-to- relational benchmarks.
Our analysis shows that BRIDGE effectively captures the desired cross-modal dependencies and has the potential to generalize to more text-DB related tasks.
arXiv Detail & Related papers (2020-12-23T12:33:52Z) - IGSQL: Database Schema Interaction Graph Based Neural Model for
Context-Dependent Text-to-SQL Generation [61.09660709356527]
We propose a database schema interaction graph encoder to utilize historicalal information of database schema items.
We evaluate our model on the benchmark SParC and Co datasets.
arXiv Detail & Related papers (2020-11-11T12:56:21Z) - A Tale of Two Linkings: Dynamically Gating between Schema Linking and
Structural Linking for Text-to-SQL Parsing [25.81069211061945]
In Text-to- semantic parsing, selecting the correct entities for the generatedsql query is both crucial and challenging.
We two linking processes to address this challenge: schema linking which links explicit NL mentions to the database and structural linking which links the entities in the outputsql with their structural relationships in the database schema.
Integrating the proposed method with two graph neural network-based semantics together with BERT representations demonstrates substantial gains in parsing accuracy on the challenging Spider dataset.
arXiv Detail & Related papers (2020-09-30T17:32:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.