Hex2vec -- Context-Aware Embedding H3 Hexagons with OpenStreetMap Tags
- URL: http://arxiv.org/abs/2111.00970v1
- Date: Mon, 1 Nov 2021 14:22:53 GMT
- Title: Hex2vec -- Context-Aware Embedding H3 Hexagons with OpenStreetMap Tags
- Authors: Szymon Wo\'zniak, Piotr Szyma\'nski
- Abstract summary: We propose the first approach to learning vector representations of regions with respect to urban functions and land-use in a micro-region grid.
We identify a subset of OpenStreetMap tags related to major characteristics of land-use, building and urban region functions, types of water, green or other natural areas.
The resulting vector representations showcase semantic structures of the map characteristics, similar to ones found in vector-based language models.
- Score: 9.743315439284407
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Representation learning of spatial and geographic data is a rapidly
developing field which allows for similarity detection between areas and
high-quality inference using deep neural networks. Past approaches however
concentrated on embedding raster imagery (maps, street or satellite photos),
mobility data or road networks. In this paper we propose the first approach to
learning vector representations of OpenStreetMap regions with respect to urban
functions and land-use in a micro-region grid. We identify a subset of OSM tags
related to major characteristics of land-use, building and urban region
functions, types of water, green or other natural areas. Through manual
verification of tagging quality, we selected 36 cities were for training region
representations. Uber's H3 index was used to divide the cities into hexagons,
and OSM tags were aggregated for each hexagon. We propose the hex2vec method
based on the Skip-gram model with negative sampling. The resulting vector
representations showcase semantic structures of the map characteristics,
similar to ones found in vector-based language models. We also present insights
from region similarity detection in six Polish cities and propose a region
typology obtained through agglomerative clustering.
Related papers
- HPix: Generating Vector Maps from Satellite Images [0.0]
We propose a novel method called HPix, which utilizes modified Generative Adversarial Networks (GANs) to generate vector tile map from satellite images.
Through empirical evaluations, our proposed approach showcases its effectiveness in producing highly accurate and visually captivating vector tile maps.
We further extend our study's application to include mapping of road intersections and building footprints cluster based on their area.
arXiv Detail & Related papers (2024-07-18T16:54:02Z) - Generating grid maps via the snake model [10.489493860187348]
The grid map, often referred to as the tile map, stands as a vital tool in geospatial visualization.
It transforms geographic regions into grids, which requires the displacement of both region centroids and boundary nodes to establish a coherent grid arrangement.
Existing approaches typically displace region centroids and boundary nodes separately, potentially resulting in self-intersected boundaries.
We introduce a novel approach that leverages the Snake displacement algorithm from cartographic generalization to concurrently displace region centroids and boundary nodes.
arXiv Detail & Related papers (2024-06-04T02:24:39Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
Chinese geographic re-ranking task aims to find the most relevant addresses among retrieved candidates.
We propose an innovative framework, namely Geo-Encoder, to more effectively integrate Chinese geographical semantics into re-ranking pipelines.
arXiv Detail & Related papers (2023-09-04T13:44:50Z) - R-MAE: Regions Meet Masked Autoencoders [113.73147144125385]
We explore regions as a potential visual analogue of words for self-supervised image representation learning.
Inspired by Masked Autoencoding (MAE), a generative pre-training baseline, we propose masked region autoencoding to learn from groups of pixels or regions.
arXiv Detail & Related papers (2023-06-08T17:56:46Z) - highway2vec -- representing OpenStreetMap microregions with respect to
their road network characteristics [3.5960954499553512]
We propose a method for generating microregions' embeddings with respect to road infrastructure characteristics.
We base our representations on OpenStreetMap road networks in a selection of cities.
We obtained vector representations that detect how similar map hexagons are in the road networks they contain.
arXiv Detail & Related papers (2023-04-26T23:16:18Z) - gtfs2vec -- Learning GTFS Embeddings for comparing Public Transport
Offer in Microregions [8.24748878314036]
We selected 48 European cities and gathered their public transport timetables in the GTFS format.
We created features describing the quantity and variety of public transport availability in each region.
We then used a hierarchical clustering approach to identify similar regions.
arXiv Detail & Related papers (2021-11-01T14:10:55Z) - Region Similarity Representation Learning [94.88055458257081]
Region Similarity Representation Learning (ReSim) is a new approach to self-supervised representation learning for localization-based tasks.
ReSim learns both regional representations for localization as well as semantic image-level representations.
We show how ReSim learns representations which significantly improve the localization and classification performance compared to a competitive MoCo-v2 baseline.
arXiv Detail & Related papers (2021-03-24T00:42:37Z) - Semantic Segmentation on Swiss3DCities: A Benchmark Study on Aerial
Photogrammetric 3D Pointcloud Dataset [67.44497676652173]
We introduce a new outdoor urban 3D pointcloud dataset, covering a total area of 2.7 $km2$, sampled from three Swiss cities.
The dataset is manually annotated for semantic segmentation with per-point labels, and is built using photogrammetry from images acquired by multirotors equipped with high-resolution cameras.
arXiv Detail & Related papers (2020-12-23T21:48:47Z) - PGL: Prior-Guided Local Self-supervised Learning for 3D Medical Image
Segmentation [87.50205728818601]
We propose a PriorGuided Local (PGL) self-supervised model that learns the region-wise local consistency in the latent feature space.
Our PGL model learns the distinctive representations of local regions, and hence is able to retain structural information.
arXiv Detail & Related papers (2020-11-25T11:03:11Z) - Self-supervised Video Representation Learning by Uncovering
Spatio-temporal Statistics [74.6968179473212]
This paper proposes a novel pretext task to address the self-supervised learning problem.
We compute a series of partitioning-temporal statistical summaries, such as the spatial location and dominant direction of the largest motion.
A neural network is built and trained to yield the statistical summaries given the video frames as inputs.
arXiv Detail & Related papers (2020-08-31T08:31:56Z) - Urban2Vec: Incorporating Street View Imagery and POIs for Multi-Modal
Urban Neighborhood Embedding [8.396746290518102]
Urban2Vec is an unsupervised multi-modal framework which incorporates both street view imagery and point-of-interest data.
We show that Urban2Vec can achieve performances better than baseline models and comparable to fully-supervised methods in downstream prediction tasks.
arXiv Detail & Related papers (2020-01-29T21:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.