Interplay of nonreciprocity and nonlinearity on mean-field energy and
dynamics of a Bose-Einstein condensate in a double-well potential
- URL: http://arxiv.org/abs/2111.01390v2
- Date: Mon, 6 Dec 2021 17:51:23 GMT
- Title: Interplay of nonreciprocity and nonlinearity on mean-field energy and
dynamics of a Bose-Einstein condensate in a double-well potential
- Authors: Yi-Piao Wu, Guo-Qing Zhang, Cai-Xia Zhang, Jian Xu, and Dan-Wei Zhang
- Abstract summary: We investigate the mean-field energy spectrum and dynamics in a Bose-Einstein condensate in a double-well potential with non-Hermiticity.
We show that the interplay of nonreciprocity and nonlinearity leads to exotic properties.
- Score: 3.633076738357535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the mean-field energy spectrum and dynamics in a Bose-Einstein
condensate in a double-well potential with non-Hermiticity from the
nonreciprocal hopping, and show that the interplay of nonreciprocity and
nonlinearity leads to exotic properties. Under the two-mode and mean-field
approximations, the nonreciprocal generalization of the nonlinear
Schr\"{o}dinger equation and Bloch equations of motion for this system are
obtained. We analyze the PT phase diagram and the dynamical stability of fixed
points. The reentrance of PT-symmetric phase and the reformation of stable
fixed points with increasing the nonreciprocity parameter are found. Besides,
we uncover a linear self-trapping effect induced by the nonreciprocity. In the
nonlinear case, the self-trapping oscillation is enhanced by the nonreciprocity
and then collapses in the PT-broken phase, and can finally be recovered in the
reentrant PT-symmetric phase.
Related papers
- Tachyonic and parametric instabilities in an extended bosonic Josephson Junction [0.0]
We study the dynamics and decay of quantum phase coherence for Bose-Einstein condensates in tunnel-coupled quantum wires.
We investigate the phenomenon of self-trapping in the relative population imbalance of the two condensates.
We discuss realistic parameters for experimental realizations of the $pi$-mode in ultracold atom setups.
arXiv Detail & Related papers (2024-10-14T14:22:49Z) - Asymmetry Amplification by a Nonadiabatic Passage through a Critical Point [0.0]
We propose and solve a minimal model of dynamic passage through a quantum second order phase transition in the presence of weak symmetry breaking interactions and no dissipation.
The evolution eventually leads to a highly asymmetric state, no matter how weak the symmetry breaking term is.
This suggests a potential mechanism for strong asymmetry in the production of particles with almost identical characteristics.
arXiv Detail & Related papers (2024-08-28T16:06:56Z) - Measurement-induced entanglement transition in chaotic quantum Ising chain [42.87502453001109]
We study perturbations that break the integrability and/or the symmetry of the model, as well as modifications in the measurement protocol, characterizing the resulting chaos and lack of integrability through the Dissipative Spectral Form Factor (DSFF)
We show that while the measurement-induced phase transition and its properties appear broadly insensitive to lack of integrability and breaking of the $bbZ$ symmetry, a modification of the measurement basis from the transverse to the longitudinal direction makes the phase transition disappear altogether.
arXiv Detail & Related papers (2024-07-11T17:39:29Z) - Josephson bifurcation readout: beyond the monochromatic approximation [49.1574468325115]
We analyze properties of bifurcation quantum detectors based on weakly nonlinear superconducting resonance circuits.
This circuit can serve as an efficient detector of the quantum state of superconducting qubits.
arXiv Detail & Related papers (2024-05-25T22:22:37Z) - Domain formation and universally critical dynamics through phase
separation in two-component Bose-Einstein condensates [5.699862689734732]
We focus on the non-equilibrium universal dynamics of the miscible-immiscible phase transition with both linear and nonlinear quenching types.
By analyzing the Bogoliubov excitations, we establish a power-law relationship between the domain correlation length, the phase transition delay, and the quench time.
Through real-time simulations of phase transition dynamics, the formation of domain defects and the delay of phase transition in non-equilibrium dynamics are demonstrated.
arXiv Detail & Related papers (2023-11-14T07:25:47Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Simultaneous Transport Evolution for Minimax Equilibria on Measures [48.82838283786807]
Min-max optimization problems arise in several key machine learning setups, including adversarial learning and generative modeling.
In this work we focus instead in finding mixed equilibria, and consider the associated lifted problem in the space of probability measures.
By adding entropic regularization, our main result establishes global convergence towards the global equilibrium.
arXiv Detail & Related papers (2022-02-14T02:23:16Z) - Adiabaticity in nonreciprocal Landau-Zener tunneling [7.674326574708779]
We investigate the Landau-Zener tunneling (LZT) of a self-interacting two-level system in which the coupling between the levels is nonreciprocal.
We show that the adiabatic tunneling probabilities can be precisely predicted by the classical action at EPs in the weak nonreciprocal regime.
arXiv Detail & Related papers (2022-01-09T05:57:04Z) - Spontaneous and explicit parity-time-symmetry breaking in drift wave
instabilities [84.14613391584454]
We show that spontaneous PT-symmetry breaking leads to the Ion Temperature Gradient (ITG) instability of drift waves, and the collisional instability is the result of explicit PT-symmetry breaking.
It is also found that gradients of ion temperature and density can destabilize the ion cyclotron waves when PT symmetry is explicitly broken by a finite collisionality.
arXiv Detail & Related papers (2020-10-19T15:59:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.