Learning Size and Shape of Calabi-Yau Spaces
- URL: http://arxiv.org/abs/2111.01436v1
- Date: Tue, 2 Nov 2021 08:48:53 GMT
- Title: Learning Size and Shape of Calabi-Yau Spaces
- Authors: Magdalena Larfors, Andre Lukas, Fabian Ruehle, Robin Schneider
- Abstract summary: We present a new machine learning library for computing metrics of string compactification spaces.
We benchmark the performance on Monte-Carlo sampled integrals against previous numerical approximations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new machine learning library for computing metrics of string
compactification spaces. We benchmark the performance on Monte-Carlo sampled
integrals against previous numerical approximations and find that our neural
networks are more sample- and computation-efficient. We are the first to
provide the possibility to compute these metrics for arbitrary, user-specified
shape and size parameters of the compact space and observe a linear relation
between optimization of the partial differential equation we are training
against and vanishing Ricci curvature.
Related papers
- Approximating Metric Magnitude of Point Sets [4.522729058300309]
Metric magnitude is a measure of the "size" of point clouds with many desirable geometric properties.
It has been adapted to various mathematical contexts and recent work suggests that it can enhance machine learning and optimization algorithms.
In this paper, we study the magnitude problem, and show efficient ways of approximating it. We show that it can be cast as a convex optimization problem, but not as a submodular optimization.
The paper describes two new algorithms - an iterative approximation algorithm that converges fast and is accurate, and a subset selection method that makes the computation even faster.
arXiv Detail & Related papers (2024-09-06T17:15:28Z) - An Information-Theoretic Analysis of Compute-Optimal Neural Scaling Laws [24.356906682593532]
We study the compute-optimal trade-off between model and training data set sizes for large neural networks.
Our result suggests a linear relation similar to that supported by the empirical analysis of chinchilla.
arXiv Detail & Related papers (2022-12-02T18:46:41Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
We study reinforcement learning for partially observed decision processes (POMDPs) with infinite observation and state spaces.
We make the first attempt at partial observability and function approximation for a class of POMDPs with a linear structure.
arXiv Detail & Related papers (2022-04-20T21:15:38Z) - Distributed Sketching for Randomized Optimization: Exact
Characterization, Concentration and Lower Bounds [54.51566432934556]
We consider distributed optimization methods for problems where forming the Hessian is computationally challenging.
We leverage randomized sketches for reducing the problem dimensions as well as preserving privacy and improving straggler resilience in asynchronous distributed systems.
arXiv Detail & Related papers (2022-03-18T05:49:13Z) - Amortised inference of fractional Brownian motion with linear
computational complexity [0.0]
We introduce a simulation-based, amortised Bayesian inference scheme to infer the parameters of random walks.
Our approach learns the posterior distribution of the walks' parameters with a likelihood-free method.
We adapt this scheme to show that a finite decorrelation time in the environment can furthermore be inferred from individual trajectories.
arXiv Detail & Related papers (2022-03-15T14:43:16Z) - Sobolev-type embeddings for neural network approximation spaces [5.863264019032882]
We consider neural network approximation spaces that classify functions according to the rate at which they can be approximated.
We prove embedding theorems between these spaces for different values of $p$.
We find that, analogous to the case of classical function spaces, it is possible to trade "smoothness" (i.e., approximation rate) for increased integrability.
arXiv Detail & Related papers (2021-10-28T17:11:38Z) - Level-Set Curvature Neural Networks: A Hybrid Approach [0.0]
We present a hybrid strategy based on deep learning to compute mean curvature in the level-set method.
The proposed inference system combines a dictionary of improved regression models with standard numerical schemes to estimate curvature more accurately.
Our findings confirm that machine learning is a promising venue for devising viable solutions to the level-set method's numerical shortcomings.
arXiv Detail & Related papers (2021-04-07T06:51:52Z) - Learning Optical Flow from a Few Matches [67.83633948984954]
We show that the dense correlation volume representation is redundant and accurate flow estimation can be achieved with only a fraction of elements in it.
Experiments show that our method can reduce computational cost and memory use significantly, while maintaining high accuracy.
arXiv Detail & Related papers (2021-04-05T21:44:00Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - Estimating informativeness of samples with Smooth Unique Information [108.25192785062367]
We measure how much a sample informs the final weights and how much it informs the function computed by the weights.
We give efficient approximations of these quantities using a linearized network.
We apply these measures to several problems, such as dataset summarization.
arXiv Detail & Related papers (2021-01-17T10:29:29Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
We present a novel Markov chain Monte Carlo algorithm for posterior inference that adaptively sets the truncation level using auxiliary slice variables.
The efficacy of the proposed algorithm is evaluated on several popular nonparametric models.
arXiv Detail & Related papers (2020-06-24T17:53:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.