A Critical Study on the Recent Deep Learning Based Semi-Supervised Video
Anomaly Detection Methods
- URL: http://arxiv.org/abs/2111.01604v1
- Date: Tue, 2 Nov 2021 14:00:33 GMT
- Title: A Critical Study on the Recent Deep Learning Based Semi-Supervised Video
Anomaly Detection Methods
- Authors: Mohammad Baradaran, Robert Bergevin
- Abstract summary: This paper introduces the researchers of the field to a new perspective and reviews the recent deep-learning based semi-supervised video anomaly detection approaches.
Our goal is to help researchers develop more effective video anomaly detection methods.
- Score: 3.198144010381572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video anomaly detection is one of the hot research topics in computer vision
nowadays, as abnormal events contain a high amount of information. Anomalies
are one of the main detection targets in surveillance systems, usually needing
real-time actions. Regarding the availability of labeled data for training
(i.e., there is not enough labeled data for abnormalities), semi-supervised
anomaly detection approaches have gained interest recently. This paper
introduces the researchers of the field to a new perspective and reviews the
recent deep-learning based semi-supervised video anomaly detection approaches,
based on a common strategy they use for anomaly detection. Our goal is to help
researchers develop more effective video anomaly detection methods. As the
selection of a right Deep Neural Network plays an important role for several
parts of this task, a quick comparative review on DNNs is prepared first.
Unlike previous surveys, DNNs are reviewed from a spatiotemporal feature
extraction viewpoint, customized for video anomaly detection. This part of the
review can help researchers in this field select suitable networks for
different parts of their methods. Moreover, some of the state-of-the-art
anomaly detection methods, based on their detection strategy, are critically
surveyed. The review provides a novel and deep look at existing methods and
results in stating the shortcomings of these approaches, which can be a hint
for future works.
Related papers
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Precursor-of-Anomaly Detection for Irregular Time Series [31.73234935455713]
We present a novel type of anomaly detection, called Precursor-of-Anomaly (PoA) detection.
To solve both problems at the same time, we present a neural controlled differential equation-based neural network and its multi-task learning algorithm.
arXiv Detail & Related papers (2023-06-27T14:10:09Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare.
The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns.
This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning.
arXiv Detail & Related papers (2022-11-09T22:40:22Z) - Anomaly Crossing: A New Method for Video Anomaly Detection as
Cross-domain Few-shot Learning [32.0713939637202]
Video anomaly detection aims to identify abnormal events that occurred in videos.
Most previous approaches learn only from normal videos using unsupervised or semi-supervised methods.
We propose a new learning paradigm by making full use of both normal and abnormal videos for video anomaly detection.
arXiv Detail & Related papers (2021-12-12T20:49:38Z) - Applications of Generative Adversarial Networks in Anomaly Detection: A
Systematic Literature Review [28.752089275446462]
generative adversarial networks (GANs) have attracted a great deal of attention in anomaly detection research.
In this paper, we present a systematic literature review of the applications of GANs in anomaly detection.
arXiv Detail & Related papers (2021-10-22T21:48:48Z) - Deep Learning for Anomaly Detection: A Review [150.9270911031327]
This paper surveys the research of deep anomaly detection with a comprehensive taxonomy, covering advancements in three high-level categories and 11 fine-grained categories of the methods.
We review their key intuitions, objective functions, underlying assumptions, advantages and disadvantages, and discuss how they address the aforementioned challenges.
arXiv Detail & Related papers (2020-07-06T02:21:16Z) - Any-Shot Sequential Anomaly Detection in Surveillance Videos [36.24563211765782]
We propose an online anomaly detection method for surveillance videos using transfer learning and any-shot learning.
Our proposed algorithm leverages the feature extraction power of neural network-based models for transfer learning and the any-shot learning capability of statistical detection methods.
arXiv Detail & Related papers (2020-04-05T02:15:45Z) - Anomaly Detection in Univariate Time-series: A Survey on the
State-of-the-Art [0.0]
Anomaly detection for time-series data has been an important research field for a long time.
Recent years an increasing number of machine learning algorithms have been developed to detect anomalies on time-series.
Researchers tried to improve these techniques using (deep) neural networks.
arXiv Detail & Related papers (2020-04-01T13:22:34Z) - Anomalous Example Detection in Deep Learning: A Survey [98.2295889723002]
This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for Deep Learning applications.
We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches.
We highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.
arXiv Detail & Related papers (2020-03-16T02:47:23Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
We show that applying self-trained deep ordinal regression to video anomaly detection overcomes two key limitations of existing methods.
We devise an end-to-end trainable video anomaly detection approach that enables joint representation learning and anomaly scoring without manually labeled normal/abnormal data.
arXiv Detail & Related papers (2020-03-15T08:44:55Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.