Quantum variational solving of the Wheeler-DeWitt equation
- URL: http://arxiv.org/abs/2111.03038v1
- Date: Thu, 4 Nov 2021 17:44:49 GMT
- Title: Quantum variational solving of the Wheeler-DeWitt equation
- Authors: Grzegorz Czelusta, Jakub Mielczarek
- Abstract summary: We propose and investigate a new method of solving the Wheeler-DeWitt equation, which employs a variational quantum computing approach.
For this purpose, the gravitational system is regularized, by performing spherical compactification of the phase space.
This makes the system's Hilbert space finite-dimensional and allows to use $SU(2)$ variables, which are easy to handle in quantum computing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the central difficulties in the quantization of the gravitational
interactions is that they are described by a set of constraints. The standard
strategy for dealing with the problem is the Dirac quantization procedure,
which leads to the Wheeler-DeWitt equation. However, solutions to the equation
are known only for specific symmetry-reduced systems, including models of
quantum cosmology. Novel methods, which enable solving the equation for complex
gravitational configurations are, therefore, worth seeking.
Here, we propose and investigate a new method of solving the Wheeler-DeWitt
equation, which employs a variational quantum computing approach, and is
possible to implement on quantum computers. For this purpose, the gravitational
system is regularized, by performing spherical compactification of the phase
space. This makes the system's Hilbert space finite-dimensional and allows to
use $SU(2)$ variables, which are easy to handle in quantum computing. The
validity of the method is examined in the case of the flat de Sitter universe.
For the purpose of testing the method, both an emulator of a quantum computer
and the IBM superconducting quantum computer have been used. The advantages and
limitations of the approach are discussed.
Related papers
- Quantum Circuits for the heat equation with physical boundary conditions via Schrodingerisation [33.76659022113328]
This paper explores the explicit design of quantum circuits for quantum simulation of partial differential equations (PDEs) with physical boundary conditions.
We present two methods for handling the inhomogeneous terms arising from time-dependent physical boundary conditions.
We then apply the quantum simulation technique from [CJL23] to transform the resulting non-autonomous system to an autonomous system in one higher dimension.
arXiv Detail & Related papers (2024-07-22T03:52:14Z) - Simulating 2D lattice gauge theories on a qudit quantum computer [2.2246996966725305]
We present a quantum computation of the properties of the basic building block of two-dimensional lattice quantum electrodynamics.
This is made possible by the use of a trapped-ion qudit quantum processor.
Qudits are ideally suited for describing gauge fields, which are naturally high-dimensional.
arXiv Detail & Related papers (2023-10-18T17:06:35Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum Circuit Completeness: Extensions and Simplifications [44.99833362998488]
The first complete equational theory for quantum circuits has only recently been introduced.
We simplify the equational theory by proving that several rules can be derived from the remaining ones.
The complete equational theory can be extended to quantum circuits with ancillae or qubit discarding.
arXiv Detail & Related papers (2023-03-06T13:31:27Z) - Quantum simulation of partial differential equations via
Schrodingerisation [31.986350313948435]
We present a simple new way to simulate general linear partial differential equations via quantum simulation.
Using a simple new transform, referred to as the warped phase transformation, any linear partial differential equation can be recast into a system of Schrodinger's equations.
This can be seen directly on the level of the dynamical equations without more sophisticated methods.
arXiv Detail & Related papers (2022-12-28T17:32:38Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Exact quantum dynamics for two-level systems with time-dependent driving [2.69899958854431]
Time-dependent Schr"odinger equation can only be exactly solvable in very rare cases.
We present a method which could generate a near infinite number of analytical-assisted solutions of the Schr"odinger equation for a qubit.
arXiv Detail & Related papers (2022-11-07T07:29:13Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Quantum Computing for Inflationary, Dark Energy and Dark Matter
Cosmology [1.1706540832106251]
Quantum computing is an emerging new method of computing which excels in simulating quantum systems.
We show how to apply the Variational Quantum Eigensolver (VQE) and Evolution of Hamiltonian (EOH) algorithms to solve the Wheeler-DeWitt equation.
We find excellent agreement with classical computing results and describe the accuracy of the different quantum algorithms.
arXiv Detail & Related papers (2021-05-28T14:04:11Z) - Hybrid Quantum-Classical Eigensolver Without Variation or Parametric
Gates [0.0]
We present a process for obtaining the eigenenergy spectrum of electronic quantum systems.
This is achieved by projecting the Hamiltonian of a quantum system onto a limited effective Hilbert space.
A process for preparing short depth quantum circuits to measure the corresponding diagonal and off-diagonal terms of the effective Hamiltonian is given.
arXiv Detail & Related papers (2020-08-26T02:31:24Z) - Sign Problems in Quantum Field Theory: Classical and Quantum Approaches [0.0]
lattice field computation theory provides non-perturbative access to equilibrium physics of quantum fields.
When applied to certain fermionic systems, or to the calculation of out-of-equilibrium physics, Monte Carlo calculations encounter the so-called sign problem.
This thesis details two methods for mitigating or avoiding the sign problem.
arXiv Detail & Related papers (2020-06-05T20:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.