Long Range Probabilistic Forecasting in Time-Series using High Order
Statistics
- URL: http://arxiv.org/abs/2111.03394v1
- Date: Fri, 5 Nov 2021 11:10:35 GMT
- Title: Long Range Probabilistic Forecasting in Time-Series using High Order
Statistics
- Authors: Prathamesh Deshpande, Sunita Sarawagi
- Abstract summary: We present a novel probabilistic forecasting method that produces forecasts coherent in terms of base level and predicted aggregate statistics.
We show that our method improves forecast performance across both base level and unseen aggregates post inference on real datasets ranging three diverse domains.
- Score: 19.12411040726229
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Long range forecasts are the starting point of many decision support systems
that need to draw inference from high-level aggregate patterns on forecasted
values. State of the art time-series forecasting methods are either subject to
concept drift on long-horizon forecasts, or fail to accurately predict coherent
and accurate high-level aggregates.
In this work, we present a novel probabilistic forecasting method that
produces forecasts that are coherent in terms of base level and predicted
aggregate statistics. We achieve the coherency between predicted base-level and
aggregate statistics using a novel inference method. Our inference method is
based on KL-divergence and can be solved efficiently in closed form. We show
that our method improves forecast performance across both base level and unseen
aggregates post inference on real datasets ranging three diverse domains.
Related papers
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Forecasting with Deep Learning: Beyond Average of Average of Average Performance [0.393259574660092]
Current practices for evaluating and comparing forecasting models focus on summarising performance into a single score.
We propose a novel framework for evaluating models from multiple perspectives.
We show the advantages of this framework by comparing a state-of-the-art deep learning approach with classical forecasting techniques.
arXiv Detail & Related papers (2024-06-24T12:28:22Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
We present a Constrained Learning approach for long-term time series forecasting that respects a user-defined upper bound on the loss at each time-step.
We propose a practical Primal-Dual algorithm to tackle it, and aims to demonstrate that it exhibits competitive average performance in time series benchmarks, while shaping the errors across the predicted window.
arXiv Detail & Related papers (2024-02-14T18:20:44Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
Vaccine supply chain optimization can benefit from hierarchical time series forecasting.
Forecasts of different hierarchy levels become incoherent when higher levels do not match the sum of the lower levels forecasts.
We tackle the vaccine sale forecasting problem by modeling sales data from GSK between 2010 and 2021 as a hierarchical time series.
arXiv Detail & Related papers (2023-05-02T14:34:34Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - A Top-Down Approach to Hierarchically Coherent Probabilistic Forecasting [21.023456590248827]
We use a novel attention-based RNN model to learn the distribution of the proportions according to which each parent prediction is split among its children nodes at any point in time.
The resulting forecasts are computed in a top-down fashion and are naturally coherent.
arXiv Detail & Related papers (2022-04-21T21:32:28Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Hierarchical forecast reconciliation with machine learning [0.34998703934432673]
This paper proposes a novel hierarchical forecasting approach based on machine learning.
It structurally combines the objectives of improved post-sample empirical forecasting accuracy and coherence.
Our results suggest that the proposed method gives superior point forecasts than existing approaches.
arXiv Detail & Related papers (2020-06-03T04:49:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.