Artifact- and content-specific quality assessment for MRI with image
rulers
- URL: http://arxiv.org/abs/2111.03780v1
- Date: Sat, 6 Nov 2021 02:17:12 GMT
- Title: Artifact- and content-specific quality assessment for MRI with image
rulers
- Authors: Ke Lei, John M. Pauly, Shreyas S. Vasanawala
- Abstract summary: In clinical practice MR images are often first seen by radiologists long after the scan.
If image quality is inadequate either patients have to return for an additional scan, or a suboptimal interpretation is rendered.
We propose a framework with multi-task CNN model trained with calibrated labels and inferenced with image rulers.
- Score: 11.551528894727573
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In clinical practice MR images are often first seen by radiologists long
after the scan. If image quality is inadequate either patients have to return
for an additional scan, or a suboptimal interpretation is rendered. An
automatic image quality assessment (IQA) would enable real-time remediation.
Existing IQA works for MRI give only a general quality score, agnostic to the
cause of and solution to low-quality scans. Furthermore, radiologists' image
quality requirements vary with the scan type and diagnostic task. Therefore,
the same score may have different implications for different scans. We propose
a framework with multi-task CNN model trained with calibrated labels and
inferenced with image rulers. Labels calibrated by human inputs follow a
well-defined and efficient labeling task. Image rulers address varying quality
standards and provide a concrete way of interpreting raw scores from the CNN.
The model supports assessments of two of the most common artifacts in MRI:
noise and motion. It achieves accuracies of around 90%, 6% better than the best
previous method examined, and 3% better than human experts on noise assessment.
Our experiments show that label calibration, image rulers, and multi-task
training improve the model's performance and generalizability.
Related papers
- A Deep-Learning-Based Label-free No-Reference Image Quality Assessment Metric: Application in Sodium MRI Denoising [0.0]
New MRI techniques, such as sodium MRI, generally suffer from low image quality due to an inherently low signal.
Deep learning models have a unique characteristic in that they are specialized to a characteristic training set.
We propose a novel DL-based NR-IQA metric, the Model Metric (MSM), which does not depend on ground-truth images or labels.
arXiv Detail & Related papers (2024-08-29T12:16:55Z) - Automated MRI Quality Assessment of Brain T1-weighted MRI in Clinical Data Warehouses: A Transfer Learning Approach Relying on Artefact Simulation [3.115212915804253]
This study presents an innovative transfer learning method for automated quality control of 3D gradient echo T1-weighted brain MRIs within a clinical data warehouse.
We first intentionally corrupt images from research datasets by inducing poorer contrast, adding noise and introducing motion artefacts.
Three artefact-specific models are pre-trained using these corrupted images to detect distinct types of artefacts.
arXiv Detail & Related papers (2024-06-18T09:53:07Z) - BAND-2k: Banding Artifact Noticeable Database for Banding Detection and
Quality Assessment [52.1640725073183]
Banding, also known as staircase-like contours, frequently occurs in flat areas of images/videos processed by the compression or quantization algorithms.
We build the largest banding IQA database so far, named Banding Artifact Noticeable Database (BAND-2k), which consists of 2,000 banding images.
A dual convolutional neural network is employed to concurrently learn the feature representation from the high-frequency and low-frequency maps.
arXiv Detail & Related papers (2023-11-29T15:56:31Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Explainable Image Quality Assessment for Medical Imaging [0.0]
Poor-quality medical images may lead to misdiagnosis.
We propose an explainable image quality assessment system and validate our idea on two different objectives.
We apply a variety of techniques to measure the faithfulness of the saliency detectors.
We show that NormGrad has significant gains over other saliency detectors by reaching a repeated Pointing Game score of 0.853 for Object-CXR and 0.611 for LVOT datasets.
arXiv Detail & Related papers (2023-03-25T14:18:39Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Conformer and Blind Noisy Students for Improved Image Quality Assessment [80.57006406834466]
Learning-based approaches for perceptual image quality assessment (IQA) usually require both the distorted and reference image for measuring the perceptual quality accurately.
In this work, we explore the performance of transformer-based full-reference IQA models.
We also propose a method for IQA based on semi-supervised knowledge distillation from full-reference teacher models into blind student models.
arXiv Detail & Related papers (2022-04-27T10:21:08Z) - Image Quality Assessment for Magnetic Resonance Imaging [4.05136808278614]
Image quality assessment (IQA) algorithms aim to reproduce the human's perception of the image quality.
We use outputs of neural network models trained to solve problems relevant to MRI.
Seven trained radiologists assess distorted images, with their verdicts then correlated with 35 different image quality metrics.
arXiv Detail & Related papers (2022-03-15T11:52:29Z) - Learning Conditional Knowledge Distillation for Degraded-Reference Image
Quality Assessment [157.1292674649519]
We propose a practical solution named degraded-reference IQA (DR-IQA)
DR-IQA exploits the inputs of IR models, degraded images, as references.
Our results can even be close to the performance of full-reference settings.
arXiv Detail & Related papers (2021-08-18T02:35:08Z) - Towards Ultrafast MRI via Extreme k-Space Undersampling and
Superresolution [65.25508348574974]
We go below the MRI acceleration factors reported by all published papers that reference the original fastMRI challenge.
We consider powerful deep learning based image enhancement methods to compensate for the underresolved images.
The quality of the reconstructed images surpasses that of the other methods, yielding an MSE of 0.00114, a PSNR of 29.6 dB, and an SSIM of 0.956 at x16 acceleration factor.
arXiv Detail & Related papers (2021-03-04T10:45:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.