Cross Attentional Audio-Visual Fusion for Dimensional Emotion Recognition
- URL: http://arxiv.org/abs/2111.05222v2
- Date: Sat, 6 Jul 2024 14:47:18 GMT
- Title: Cross Attentional Audio-Visual Fusion for Dimensional Emotion Recognition
- Authors: R. Gnana Praveen, Eric Granger, Patrick Cardinal,
- Abstract summary: Most effective techniques for emotion recognition efficiently leverage diverse and complimentary sources of information.
We introduce a cross-attentional fusion approach to extract the salient features across audio-visual (A-V) modalities.
Results indicate that our cross-attentional A-V fusion model is a cost-effective approach that outperforms state-of-the-art fusion approaches.
- Score: 13.994609732846344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal analysis has recently drawn much interest in affective computing, since it can improve the overall accuracy of emotion recognition over isolated uni-modal approaches. The most effective techniques for multimodal emotion recognition efficiently leverage diverse and complimentary sources of information, such as facial, vocal, and physiological modalities, to provide comprehensive feature representations. In this paper, we focus on dimensional emotion recognition based on the fusion of facial and vocal modalities extracted from videos, where complex spatiotemporal relationships may be captured. Most of the existing fusion techniques rely on recurrent networks or conventional attention mechanisms that do not effectively leverage the complimentary nature of audio-visual (A-V) modalities. We introduce a cross-attentional fusion approach to extract the salient features across A-V modalities, allowing for accurate prediction of continuous values of valence and arousal. Our new cross-attentional A-V fusion model efficiently leverages the inter-modal relationships. In particular, it computes cross-attention weights to focus on the more contributive features across individual modalities, and thereby combine contributive feature representations, which are then fed to fully connected layers for the prediction of valence and arousal. The effectiveness of the proposed approach is validated experimentally on videos from the RECOLA and Fatigue (private) data-sets. Results indicate that our cross-attentional A-V fusion model is a cost-effective approach that outperforms state-of-the-art fusion approaches. Code is available: \url{https://github.com/praveena2j/Cross-Attentional-AV-Fusion}
Related papers
- Joint Multimodal Transformer for Emotion Recognition in the Wild [49.735299182004404]
Multimodal emotion recognition (MMER) systems typically outperform unimodal systems.
This paper proposes an MMER method that relies on a joint multimodal transformer (JMT) for fusion with key-based cross-attention.
arXiv Detail & Related papers (2024-03-15T17:23:38Z) - Dynamic Cross Attention for Audio-Visual Person Verification [3.5803801804085347]
We propose a Dynamic Cross-Attention (DCA) model that can dynamically select the cross-attended or unattended features on the fly.
In particular, a conditional gating layer is designed to evaluate the contribution of the cross-attention mechanism.
Extensive experiments are conducted on the Voxceleb1 dataset to demonstrate the robustness of the proposed model.
arXiv Detail & Related papers (2024-03-07T17:07:51Z) - Audio-Visual Person Verification based on Recursive Fusion of Joint Cross-Attention [3.5803801804085347]
We introduce a joint cross-attentional model, where a joint audio-visual feature representation is employed in the cross-attention framework.
We also explore BLSTMs to improve the temporal modeling of audio-visual feature representations.
Results indicate that the proposed model shows promising improvement in fusion performance by adeptly capturing the intra-and inter-modal relationships.
arXiv Detail & Related papers (2024-03-07T16:57:45Z) - From Text to Pixels: A Context-Aware Semantic Synergy Solution for
Infrared and Visible Image Fusion [66.33467192279514]
We introduce a text-guided multi-modality image fusion method that leverages the high-level semantics from textual descriptions to integrate semantics from infrared and visible images.
Our method not only produces visually superior fusion results but also achieves a higher detection mAP over existing methods, achieving state-of-the-art results.
arXiv Detail & Related papers (2023-12-31T08:13:47Z) - Disentangled Interaction Representation for One-Stage Human-Object
Interaction Detection [70.96299509159981]
Human-Object Interaction (HOI) detection is a core task for human-centric image understanding.
Recent one-stage methods adopt a transformer decoder to collect image-wide cues that are useful for interaction prediction.
Traditional two-stage methods benefit significantly from their ability to compose interaction features in a disentangled and explainable manner.
arXiv Detail & Related papers (2023-12-04T08:02:59Z) - A Low-rank Matching Attention based Cross-modal Feature Fusion Method
for Conversational Emotion Recognition [56.20144064187554]
This paper develops a novel cross-modal feature fusion method for the Conversational emotion recognition (CER) task.
By setting a matching weight and calculating attention scores between modal features row by row, LMAM contains fewer parameters than the self-attention method.
We show that LMAM can be embedded into any existing state-of-the-art DL-based CER methods and help boost their performance in a plug-and-play manner.
arXiv Detail & Related papers (2023-06-16T16:02:44Z) - Audio-Visual Fusion for Emotion Recognition in the Valence-Arousal Space
Using Joint Cross-Attention [15.643176705932396]
We introduce a joint cross-attentional model for A-V fusion that extracts the salient features across A-V modalities.
It computes the cross-attention weights based on correlation between the joint feature representation and that of the individual modalities.
Results indicate that our joint cross-attentional A-V fusion model provides a cost-effective solution that can outperform state-of-the-art approaches.
arXiv Detail & Related papers (2022-09-19T15:01:55Z) - A Joint Cross-Attention Model for Audio-Visual Fusion in Dimensional Emotion Recognition [46.443866373546726]
We focus on dimensional emotion recognition based on the fusion of facial and vocal modalities extracted from videos.
We propose a joint cross-attention model that relies on the complementary relationships to extract the salient features.
Our proposed A-V fusion model provides a cost-effective solution that can outperform state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-28T14:09:43Z) - MMLatch: Bottom-up Top-down Fusion for Multimodal Sentiment Analysis [84.7287684402508]
Current deep learning approaches for multimodal fusion rely on bottom-up fusion of high and mid-level latent modality representations.
Models of human perception highlight the importance of top-down fusion, where high-level representations affect the way sensory inputs are perceived.
We propose a neural architecture that captures top-down cross-modal interactions, using a feedback mechanism in the forward pass during network training.
arXiv Detail & Related papers (2022-01-24T17:48:04Z) - A cross-modal fusion network based on self-attention and residual
structure for multimodal emotion recognition [7.80238628278552]
We propose a novel cross-modal fusion network based on self-attention and residual structure (CFN-SR) for multimodal emotion recognition.
To verify the effectiveness of the proposed method, we conduct experiments on the RAVDESS dataset.
The experimental results show that the proposed CFN-SR achieves the state-of-the-art and obtains 75.76% accuracy with 26.30M parameters.
arXiv Detail & Related papers (2021-11-03T12:24:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.