Entanglement criteria for the bosonic and fermionic induced ensembles
- URL: http://arxiv.org/abs/2111.05638v1
- Date: Wed, 10 Nov 2021 11:10:11 GMT
- Title: Entanglement criteria for the bosonic and fermionic induced ensembles
- Authors: Stephane Dartois, Ion Nechita and Adrian Tanasa
- Abstract summary: We introduce the bosonic and fermionic ensembles of density matrices and study their entanglement.
In the fermionic case, we show that random bipartite fermionic density matrices have non-positive partial transposition, hence they are typically entangled.
- Score: 1.2891210250935143
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the bosonic and fermionic ensembles of density matrices and
study their entanglement. In the fermionic case, we show that random bipartite
fermionic density matrices have non-positive partial transposition, hence they
are typically entangled. The similar analysis in the bosonic case is more
delicate, due to a large positive outlier eigenvalue. We compute the asymptotic
ratio between the size of the environment and the size of the system Hilbert
space for which random bipartite bosonic density matrices fail the PPT
criterion, being thus entangled. We also relate moment computations for
tensor-symmetric random matrices to evaluations of the circuit-counting and
interlace graph polynomials for directed graphs.
Related papers
- Efficient conversion from fermionic Gaussian states to matrix product states [48.225436651971805]
We propose a highly efficient algorithm that converts fermionic Gaussian states to matrix product states.
It can be formulated for finite-size systems without translation invariance, but becomes particularly appealing when applied to infinite systems.
The potential of our method is demonstrated by numerical calculations in two chiral spin liquids.
arXiv Detail & Related papers (2024-08-02T10:15:26Z) - Eigenstate Correlations in Dual-Unitary Quantum Circuits: Partial Spectral Form Factor [0.0]
Analytic insights into eigenstate correlations can be obtained by the recently introduced partial spectral form factor.
We study the partial spectral form factor in chaotic dual-unitary quantum circuits in the thermodynamic limit.
arXiv Detail & Related papers (2024-07-29T12:02:24Z) - Interacting chiral fermions on the lattice with matrix product operator norms [37.69303106863453]
We develop a Hamiltonian formalism for simulating interacting chiral fermions on the lattice.
The fermion doubling problem is circumvented by constructing a Fock space endowed with a semi-definite norm.
We demonstrate that the scaling limit of the free model recovers the chiral fermion field.
arXiv Detail & Related papers (2024-05-16T17:46:12Z) - Radiative transport in a periodic structure with band crossings [47.82887393172228]
We derive the semi-classical model for the Schr"odinger equation in arbitrary spatial dimensions.
We consider both deterministic and random scenarios.
As a specific application, we deduce the effective dynamics of a wave packet in graphene with randomness.
arXiv Detail & Related papers (2024-02-09T23:34:32Z) - Symmetry-resolved entanglement in critical non-Hermitian systems [0.0]
We study the symmetry-resolved entanglement in the ground state of the non-Hermitian Su-Schrieffer-Heeger chain at the critical point.
By combining bosonization techniques in the field theory and exact lattice numerical calculations, we analytically derive the charged moments of $rho_A$ and $|rho_A|$.
arXiv Detail & Related papers (2023-03-09T13:14:26Z) - Symmetry-resolved Page curves [0.0]
We study a natural extension in the presence of a conservation law and introduce the symmetry-resolved Page curves.
We derive explicit analytic formulae for two important statistical ensembles with a $U(1)$-symmetry.
arXiv Detail & Related papers (2022-06-10T13:22:14Z) - Exact analytical relation between the entropies and the dominant
eigenvalue of random reduced density matrices [0.0]
In this paper, we show how the entropy (including the von Neumann entropy) obtained by tracing across various sizes of subsystems is related to their dominant eigenvalue.
The correlation between our study and entanglement generated by quantum computing is provided with various examples.
arXiv Detail & Related papers (2022-04-04T18:00:05Z) - Entanglement Entropy of Non-Hermitian Free Fermions [59.54862183456067]
We study the entanglement properties of non-Hermitian free fermionic models with translation symmetry.
Our results show that the entanglement entropy has a logarithmic correction to the area law in both one-dimensional and two-dimensional systems.
arXiv Detail & Related papers (2021-05-20T14:46:09Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z) - Riemannian Gaussian distributions, random matrix ensembles and diffusion
kernels [0.0]
We show how to compute marginals of the probability density functions on a random matrix type of symmetric spaces.
We also show how the probability density functions are a particular case of diffusion kernels of the Karlin-McGregor type, describing non-intersecting processes in the Weyl chamber of Lie groups.
arXiv Detail & Related papers (2020-11-27T11:41:29Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.