Graph Transplant: Node Saliency-Guided Graph Mixup with Local Structure
Preservation
- URL: http://arxiv.org/abs/2111.05639v1
- Date: Wed, 10 Nov 2021 11:10:13 GMT
- Title: Graph Transplant: Node Saliency-Guided Graph Mixup with Local Structure
Preservation
- Authors: Joonhyung Park, Hajin Shim, Eunho Yang
- Abstract summary: We present the first Mixup-like graph augmentation method at the graph-level called Graph Transplant.
Our method identifies the sub-structure as a mix unit that can preserve the local information.
We extensively validate our method with diverse GNN architectures on multiple graph classification benchmark datasets.
- Score: 27.215800308343322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-structured datasets usually have irregular graph sizes and
connectivities, rendering the use of recent data augmentation techniques, such
as Mixup, difficult. To tackle this challenge, we present the first Mixup-like
graph augmentation method at the graph-level called Graph Transplant, which
mixes irregular graphs in data space. To be well defined on various scales of
the graph, our method identifies the sub-structure as a mix unit that can
preserve the local information. Since the mixup-based methods without special
consideration of the context are prone to generate noisy samples, our method
explicitly employs the node saliency information to select meaningful subgraphs
and adaptively determine the labels. We extensively validate our method with
diverse GNN architectures on multiple graph classification benchmark datasets
from a wide range of graph domains of different sizes. Experimental results
show the consistent superiority of our method over other basic data
augmentation baselines. We also demonstrate that Graph Transplant enhances the
performance in terms of robustness and model calibration.
Related papers
- GDM: Dual Mixup for Graph Classification with Limited Supervision [27.8982897698616]
Graph Neural Networks (GNNs) require a large number of labeled graph samples to obtain good performance on the graph classification task.
The performance of GNNs degrades significantly as the number of labeled graph samples decreases.
We propose a novel mixup-based graph augmentation method to generate new labeled graph samples.
arXiv Detail & Related papers (2023-09-18T20:17:10Z) - Graph Mixup with Soft Alignments [49.61520432554505]
We study graph data augmentation by mixup, which has been used successfully on images.
We propose S-Mixup, a simple yet effective mixup method for graph classification by soft alignments.
arXiv Detail & Related papers (2023-06-11T22:04:28Z) - Deep Graph-Level Clustering Using Pseudo-Label-Guided Mutual Information
Maximization Network [31.38584638254226]
We study the problem of partitioning a set of graphs into different groups such that the graphs in the same group are similar while the graphs in different groups are dissimilar.
To solve the problem, we propose a novel method called Deep Graph-Level Clustering (DGLC)
Our DGLC achieves graph-level representation learning and graph-level clustering in an end-to-end manner.
arXiv Detail & Related papers (2023-02-05T12:28:08Z) - Demystifying Graph Convolution with a Simple Concatenation [6.542119695695405]
We quantify the information overlap between graph topology, node features, and labels.
We show that graph concatenation is a simple but more flexible alternative to graph convolution.
arXiv Detail & Related papers (2022-07-18T16:39:33Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Wasserstein-based Graph Alignment [56.84964475441094]
We cast a new formulation for the one-to-many graph alignment problem, which aims at matching a node in the smaller graph with one or more nodes in the larger graph.
We show that our method leads to significant improvements with respect to the state-of-the-art algorithms for each of these tasks.
arXiv Detail & Related papers (2020-03-12T22:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.