Learning Multi-Stage Tasks with One Demonstration via Self-Replay
- URL: http://arxiv.org/abs/2111.07447v1
- Date: Sun, 14 Nov 2021 20:57:52 GMT
- Title: Learning Multi-Stage Tasks with One Demonstration via Self-Replay
- Authors: Norman Di Palo and Edward Johns
- Abstract summary: We introduce a novel method to learn everyday-like multi-stage tasks from a single human demonstration.
Inspired by the recent Coarse-to-Fine Imitation Learning method, we model imitation learning as a learned object reaching phase followed by an open-loop replay of the demonstrator's actions.
We evaluate with real-world experiments on a set of everyday-like multi-stage tasks, which we show that our method can solve from a single demonstration.
- Score: 9.34061107793983
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we introduce a novel method to learn everyday-like multi-stage
tasks from a single human demonstration, without requiring any prior object
knowledge. Inspired by the recent Coarse-to-Fine Imitation Learning method, we
model imitation learning as a learned object reaching phase followed by an
open-loop replay of the demonstrator's actions. We build upon this for
multi-stage tasks where, following the human demonstration, the robot can
autonomously collect image data for the entire multi-stage task, by reaching
the next object in the sequence and then replaying the demonstration, and then
repeating in a loop for all stages of the task. We evaluate with real-world
experiments on a set of everyday-like multi-stage tasks, which we show that our
method can solve from a single demonstration. Videos and supplementary material
can be found at https://www.robot-learning.uk/self-replay.
Related papers
- DITTO: Demonstration Imitation by Trajectory Transformation [31.930923345163087]
In this work, we address the problem of one-shot imitation from a single human demonstration, given by an RGB-D video recording.
We propose a two-stage process. In the first stage we extract the demonstration trajectory offline. This entails segmenting manipulated objects and determining their relative motion in relation to secondary objects such as containers.
In the online trajectory generation stage, we first re-detect all objects, then warp the demonstration trajectory to the current scene and execute it on the robot.
arXiv Detail & Related papers (2024-03-22T13:46:51Z) - Cross-Domain Transfer via Semantic Skill Imitation [49.83150463391275]
We propose an approach for semantic imitation, which uses demonstrations from a source domain, e.g. human videos, to accelerate reinforcement learning (RL)
Instead of imitating low-level actions like joint velocities, our approach imitates the sequence of demonstrated semantic skills like "opening the microwave" or "turning on the stove"
arXiv Detail & Related papers (2022-12-14T18:46:14Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
We use unlabeled videos of humans solving a wide range of manipulation tasks to learn a task-agnostic reward function for robotic manipulation policies.
The learned rewards are based on distances to a goal in an embedding space learned using a time-contrastive objective.
arXiv Detail & Related papers (2022-11-16T16:26:48Z) - Bottom-Up Skill Discovery from Unsegmented Demonstrations for
Long-Horizon Robot Manipulation [55.31301153979621]
We tackle real-world long-horizon robot manipulation tasks through skill discovery.
We present a bottom-up approach to learning a library of reusable skills from unsegmented demonstrations.
Our method has shown superior performance over state-of-the-art imitation learning methods in multi-stage manipulation tasks.
arXiv Detail & Related papers (2021-09-28T16:18:54Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Playful Interactions for Representation Learning [82.59215739257104]
We propose to use playful interactions in a self-supervised manner to learn visual representations for downstream tasks.
We collect 2 hours of playful data in 19 diverse environments and use self-predictive learning to extract visual representations.
Our representations generalize better than standard behavior cloning and can achieve similar performance with only half the number of required demonstrations.
arXiv Detail & Related papers (2021-07-19T17:54:48Z) - Coarse-to-Fine Imitation Learning: Robot Manipulation from a Single
Demonstration [8.57914821832517]
We introduce a simple new method for visual imitation learning, which allows a novel robot manipulation task to be learned from a single human demonstration.
Our method models imitation learning as a state estimation problem, with the state defined as the end-effector's pose.
At test time, the end-effector moves to the estimated state through a linear path, at which point the original demonstration's end-effector velocities are simply replayed.
arXiv Detail & Related papers (2021-05-13T16:36:55Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.