Learning Robust Scheduling with Search and Attention
- URL: http://arxiv.org/abs/2111.08073v1
- Date: Mon, 15 Nov 2021 20:46:26 GMT
- Title: Learning Robust Scheduling with Search and Attention
- Authors: David Sandberg, Tor Kvernvik, Francesco Davide Calabrese
- Abstract summary: Allocating physical layer resources to users based on channel quality, buffer size, requirements and constraints represents one of the central optimization problems in the management of radio resources.
This problem is even more pronounced in MU-MIMO scheduling where the scheduler can assign multiple users to the same time-frequency physical resources.
In this work we treat the MU-MIMO scheduling problem as a tree-structured problem and, borrowing from the recent successes of AlphaGo Zero, we investigate the feasibility of searching for the best performing solutions.
- Score: 6.217548079545464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Allocating physical layer resources to users based on channel quality, buffer
size, requirements and constraints represents one of the central optimization
problems in the management of radio resources. The solution space grows
combinatorially with the cardinality of each dimension making it hard to find
optimal solutions using an exhaustive search or even classical optimization
algorithms given the stringent time requirements. This problem is even more
pronounced in MU-MIMO scheduling where the scheduler can assign multiple users
to the same time-frequency physical resources. Traditional approaches thus
resort to designing heuristics that trade optimality in favor of feasibility of
execution. In this work we treat the MU-MIMO scheduling problem as a
tree-structured combinatorial problem and, borrowing from the recent successes
of AlphaGo Zero, we investigate the feasibility of searching for the best
performing solutions using a combination of Monte Carlo Tree Search and
Reinforcement Learning. To cater to the nature of the problem at hand, like the
lack of an intrinsic ordering of the users as well as the importance of
dependencies between combinations of users, we make fundamental modifications
to the neural network architecture by introducing the self-attention mechanism.
We then demonstrate that the resulting approach is not only feasible but vastly
outperforms state-of-the-art heuristic-based scheduling approaches in the
presence of measurement uncertainties and finite buffers.
Related papers
- LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - Decision-focused Graph Neural Networks for Combinatorial Optimization [62.34623670845006]
An emerging strategy to tackle optimization problems involves the adoption of graph neural networks (GNNs) as an alternative to traditional algorithms.
Despite the growing popularity of GNNs and traditional algorithm solvers in the realm of CO, there is limited research on their integrated use and the correlation between them within an end-to-end framework.
We introduce a decision-focused framework that utilizes GNNs to address CO problems with auxiliary support.
arXiv Detail & Related papers (2024-06-05T22:52:27Z) - Edge Intelligence Optimization for Large Language Model Inference with Batching and Quantization [20.631476379056892]
Large Language Models (LLMs) are at the forefront of this movement.
LLMs require cloud hosting, which raises issues regarding privacy, latency, and usage limitations.
We present an edge intelligence optimization problem tailored for LLM inference.
arXiv Detail & Related papers (2024-05-12T02:38:58Z) - An Expandable Machine Learning-Optimization Framework to Sequential
Decision-Making [0.0]
We present an integrated prediction-optimization (PredOpt) framework to efficiently solve sequential decision-making problems.
We address the key issues of sequential dependence, infeasibility, and generalization in machine learning (ML) to make predictions for optimal solutions to instances problems.
arXiv Detail & Related papers (2023-11-12T21:54:53Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Solving the capacitated vehicle routing problem with timing windows
using rollouts and MAX-SAT [4.873362301533824]
Vehicle routing is a well known class of NP-hard optimisation problems.
Recent work in reinforcement learning has been a promising alternative approach.
This paper proposes a hybrid approach that combines reinforcement learning, policy rollouts, and a satisfiability.
arXiv Detail & Related papers (2022-06-14T06:27:09Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Learning to Schedule Heuristics in Branch-and-Bound [25.79025327341732]
Real-world applications typically require finding good solutions early in the search to enable fast decision-making.
We propose the first data-driven framework for schedulings in an exact MIP solver.
Compared to the default settings of a state-of-the-art academic MIP solver, we are able to reduce the average primal integral by up to 49% on a class of challenging instances.
arXiv Detail & Related papers (2021-03-18T14:49:52Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Geometric Deep Reinforcement Learning for Dynamic DAG Scheduling [8.14784681248878]
In this paper, we propose a reinforcement learning approach to solve a realistic scheduling problem.
We apply it to an algorithm commonly executed in the high performance computing community, the Cholesky factorization.
Our algorithm uses graph neural networks in combination with an actor-critic algorithm (A2C) to build an adaptive representation of the problem on the fly.
arXiv Detail & Related papers (2020-11-09T10:57:21Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.