Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual
Concepts
- URL: http://arxiv.org/abs/2111.08276v1
- Date: Tue, 16 Nov 2021 07:55:26 GMT
- Title: Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual
Concepts
- Authors: Yan Zeng, Xinsong Zhang, Hang Li
- Abstract summary: We argue that the use of object detection may not be suitable for vision language pre-training.
This paper proposes a new method called X-VLM to perform multi-grained vision language pre-training'
- Score: 14.808701042367401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most existing methods in vision language pre-training rely on object-centric
features extracted through object detection, and make fine-grained alignments
between the extracted features and texts. We argue that the use of object
detection may not be suitable for vision language pre-training. Instead, we
point out that the task should be performed so that the regions of `visual
concepts' mentioned in the texts are located in the images, and in the meantime
alignments between texts and visual concepts are identified, where the
alignments are in multi-granularity. This paper proposes a new method called
X-VLM to perform `multi-grained vision language pre-training'. Experimental
results show that X-VLM consistently outperforms state-of-the-art methods in
many downstream vision language tasks.
Related papers
- Towards Interpreting Visual Information Processing in Vision-Language Models [24.51408101801313]
Vision-Language Models (VLMs) are powerful tools for processing and understanding text and images.
We study the processing of visual tokens in the language model component of LLaVA, a prominent VLM.
arXiv Detail & Related papers (2024-10-09T17:55:02Z) - Enhancing Visual Document Understanding with Contrastive Learning in
Large Visual-Language Models [56.76307866160105]
We propose a contrastive learning framework, termed Document Object COntrastive learning (DoCo)
DoCo leverages an auxiliary multimodal encoder to obtain the features of document objects and align them to the visual features generated by the vision encoder of Large Visual-Language Models (LVLMs)
We demonstrate that the proposed DoCo serves as a plug-and-play pre-training method, which can be employed in the pre-training of various LVLMs without inducing any increase in computational complexity during the inference process.
arXiv Detail & Related papers (2024-02-29T10:17:27Z) - Lyrics: Boosting Fine-grained Language-Vision Alignment and Comprehension via Semantic-aware Visual Objects [11.117055725415446]
Large Vision Language Models (LVLMs) have demonstrated impressive zero-shot capabilities in various vision-language dialogue scenarios.
The absence of fine-grained visual object detection hinders the model from understanding the details of images, leading to irreparable visual hallucinations and factual errors.
We propose Lyrics, a novel multi-modal pre-training and instruction fine-tuning paradigm that bootstraps vision-language alignment from fine-grained cross-modal collaboration.
arXiv Detail & Related papers (2023-12-08T09:02:45Z) - Advancing Visual Grounding with Scene Knowledge: Benchmark and Method [74.72663425217522]
Visual grounding (VG) aims to establish fine-grained alignment between vision and language.
Most existing VG datasets are constructed using simple description texts.
We propose a novel benchmark of underlineScene underlineKnowledge-guided underlineVisual underlineGrounding.
arXiv Detail & Related papers (2023-07-21T13:06:02Z) - Fine-grained Visual-Text Prompt-Driven Self-Training for Open-Vocabulary
Object Detection [87.39089806069707]
We propose a fine-grained Visual-Text Prompt-driven self-training paradigm for Open-Vocabulary Detection (VTP-OVD)
During the adapting stage, we enable VLM to obtain fine-grained alignment by using learnable text prompts to resolve an auxiliary dense pixel-wise prediction task.
Experiments show that our method achieves the state-of-the-art performance for open-vocabulary object detection, e.g., 31.5% mAP on unseen classes of COCO.
arXiv Detail & Related papers (2022-11-02T03:38:02Z) - Fine-Grained Semantically Aligned Vision-Language Pre-Training [151.7372197904064]
Large-scale vision-language pre-training has shown impressive advances in a wide range of downstream tasks.
Existing methods mainly model the cross-modal alignment by the similarity of the global representations of images and texts.
We introduce LO, a fine-grained semantically aLigned visiOn-langUage PrE-training framework, which learns fine-grained semantic alignment from the novel perspective of game-theoretic interactions.
arXiv Detail & Related papers (2022-08-04T07:51:48Z) - Vision-Language Pre-Training for Boosting Scene Text Detectors [57.08046351495244]
We specifically adapt vision-language joint learning for scene text detection.
We propose to learn contextualized, joint representations through vision-language pre-training.
The pre-trained model is able to produce more informative representations with richer semantics.
arXiv Detail & Related papers (2022-04-29T03:53:54Z) - KD-VLP: Improving End-to-End Vision-and-Language Pretraining with Object
Knowledge Distillation [42.01427946204401]
Self-supervised vision-and-language pretraining aims to learn transferable multi-modal representations from large-scale image-text data.
We propose an object-aware end-to-end QF framework, which directly feeds image grid features from CNNs into the Transformer and learns the multi-modal representations jointly.
To achieve that, we design two novel pretext tasks by taking object features and their semantic labels from external detectors as supervision.
arXiv Detail & Related papers (2021-09-22T03:38:05Z) - Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks [207.52609682812147]
We propose a new learning method Oscar (Object-Semantics Aligned Pre-training)
It uses object tags detected in images as anchor points to significantly ease the learning of alignments.
We pre-train an Oscar model on the public corpus of 6.5 million text-image pairs, and fine-tune it on downstream tasks.
arXiv Detail & Related papers (2020-04-13T19:18:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.