Inference-Time Personalized Federated Learning
- URL: http://arxiv.org/abs/2111.08356v1
- Date: Tue, 16 Nov 2021 10:57:20 GMT
- Title: Inference-Time Personalized Federated Learning
- Authors: Ohad Amosy, Gal Eyal and Gal Chechik
- Abstract summary: Inference-Time PFL (IT-PFL) is where a model trained on a set of clients needs to be later evaluated on novel unlabeled clients at inference time.
We propose a novel approach to this problem IT-PFL-HN, based on a hypernetwork module and an encoder module.
We find that IT-PFL-HN generalizes better than current FL and PFL methods, especially when the novel client has a large domain shift.
- Score: 17.60724466773559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Federated learning (FL), multiple clients collaborate to learn a model
through a central server but keep the data decentralized. Personalized
federated learning (PFL) further extends FL to handle data heterogeneity
between clients by learning personalized models. In both FL and PFL, all
clients participate in the training process and their labeled data is used for
training. However, in reality, novel clients may wish to join a prediction
service after it has been deployed, obtaining predictions for their own
unlabeled data.
Here, we defined a new learning setup, Inference-Time PFL (IT-PFL), where a
model trained on a set of clients, needs to be later evaluated on novel
unlabeled clients at inference time. We propose a novel approach to this
problem IT-PFL-HN, based on a hypernetwork module and an encoder module.
Specifically, we train an encoder network that learns a representation for a
client given its unlabeled data. That client representation is fed to a
hypernetwork that generates a personalized model for that client. Evaluated on
four benchmark datasets, we find that IT-PFL-HN generalizes better than current
FL and PFL methods, especially when the novel client has a large domain shift.
We also analyzed the generalization error for the novel client, showing how it
can be bounded using results from multi-task learning and domain adaptation.
Finally, since novel clients do not contribute their data to training, they can
potentially have better control over their data privacy; indeed, we showed
analytically and experimentally how novel clients can apply differential
privacy to their data.
Related papers
- FedSelect: Personalized Federated Learning with Customized Selection of Parameters for Fine-Tuning [9.22574528776347]
FedSelect is a novel PFL algorithm inspired by the iterative subnetwork discovery procedure used for the Lottery Ticket Hypothesis.
We show that FedSelect outperforms recent state-of-the-art PFL algorithms under challenging client data heterogeneity settings.
arXiv Detail & Related papers (2024-04-03T05:36:21Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - FedSampling: A Better Sampling Strategy for Federated Learning [81.85411484302952]
Federated learning (FL) is an important technique for learning models from decentralized data in a privacy-preserving way.
Existing FL methods usually uniformly sample clients for local model learning in each round.
We propose a novel data uniform sampling strategy for federated learning (FedSampling)
arXiv Detail & Related papers (2023-06-25T13:38:51Z) - Federated Learning of Shareable Bases for Personalization-Friendly Image
Classification [54.72892987840267]
FedBasis learns a set of few shareable basis'' models, which can be linearly combined to form personalized models for clients.
Specifically for a new client, only a small set of combination coefficients, not the model weights, needs to be learned.
To demonstrate the effectiveness and applicability of FedBasis, we also present a more practical PFL testbed for image classification.
arXiv Detail & Related papers (2023-04-16T20:19:18Z) - Personalized Federated Learning on Long-Tailed Data via Adversarial
Feature Augmentation [24.679535905451758]
PFL aims to learn personalized models for each client based on the knowledge across all clients in a privacy-preserving manner.
Existing PFL methods assume that the underlying global data across all clients are uniformly distributed without considering the long-tail distribution.
We propose Federated Learning with Adversarial Feature Augmentation (FedAFA) to address this joint problem in PFL.
arXiv Detail & Related papers (2023-03-27T13:00:20Z) - Client Selection for Generalization in Accelerated Federated Learning: A
Multi-Armed Bandit Approach [20.300740276237523]
Federated learning (FL) is an emerging machine learning (ML) paradigm used to train models across multiple nodes (i.e., clients) holding local data sets.
We develop a novel algorithm to achieve this goal, dubbed Bandit Scheduling for FL (BSFL)
arXiv Detail & Related papers (2023-03-18T09:45:58Z) - Visual Prompt Based Personalized Federated Learning [83.04104655903846]
We propose a novel PFL framework for image classification tasks, dubbed pFedPT, that leverages personalized visual prompts to implicitly represent local data distribution information of clients.
Experiments on the CIFAR10 and CIFAR100 datasets show that pFedPT outperforms several state-of-the-art (SOTA) PFL algorithms by a large margin in various settings.
arXiv Detail & Related papers (2023-03-15T15:02:15Z) - Knowledge-Enhanced Semi-Supervised Federated Learning for Aggregating
Heterogeneous Lightweight Clients in IoT [34.128674870180596]
Federated learning (FL) enables multiple clients to train models collaboratively without sharing local data.
We propose pFedKnow, which generates lightweight personalized client models via neural network pruning techniques to reduce communication cost.
Experiment results on both image and text datasets show that the proposed pFedKnow outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2023-03-05T13:19:10Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Federated Learning from Only Unlabeled Data with
Class-Conditional-Sharing Clients [98.22390453672499]
Supervised federated learning (FL) enables multiple clients to share the trained model without sharing their labeled data.
We propose federation of unsupervised learning (FedUL), where the unlabeled data are transformed into surrogate labeled data for each of the clients.
arXiv Detail & Related papers (2022-04-07T09:12:00Z) - Unifying Distillation with Personalization in Federated Learning [1.8262547855491458]
Federated learning (FL) is a decentralized privacy-preserving learning technique in which clients learn a joint collaborative model through a central aggregator without sharing their data.
In this setting, all clients learn a single common predictor (FedAvg), which does not generalize well on each client's local data due to the statistical data heterogeneity among clients.
In this paper, we address this problem with PersFL, a two-stage personalized learning algorithm.
In the first stage, PersFL finds the optimal teacher model of each client during the FL training phase. In the second stage, PersFL distills the useful knowledge from
arXiv Detail & Related papers (2021-05-31T17:54:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.