Multiclass Optimal Classification Trees with SVM-splits
- URL: http://arxiv.org/abs/2111.08674v1
- Date: Tue, 16 Nov 2021 18:15:56 GMT
- Title: Multiclass Optimal Classification Trees with SVM-splits
- Authors: V\'ictor Blanco, Alberto Jap\'on, Justo Puerto
- Abstract summary: We present a novel mathematical optimization-based methodology to construct tree-shaped classification rules for multiclass instances.
Our approach consists of building Classification Trees in which, except for the leaf nodes, the labels are temporarily left out and grouped into two classes by means of a SVM separating hyperplane.
- Score: 1.5039745292757671
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we present a novel mathematical optimization-based methodology
to construct tree-shaped classification rules for multiclass instances. Our
approach consists of building Classification Trees in which, except for the
leaf nodes, the labels are temporarily left out and grouped into two classes by
means of a SVM separating hyperplane. We provide a Mixed Integer Non Linear
Programming formulation for the problem and report the results of an extended
battery of computational experiments to assess the performance of our proposal
with respect to other benchmarking classification methods.
Related papers
- ODTE -- An ensemble of multi-class SVM-based oblique decision trees [0.7182449176083623]
ODTE is a new ensemble that uses oblique decision trees as base classifiers.
We introduce STree, the base algorithm for growing oblique decision trees.
ODTE ranks consistently above its competitors.
arXiv Detail & Related papers (2024-11-20T14:58:32Z) - Synergistic eigenanalysis of covariance and Hessian matrices for enhanced binary classification [72.77513633290056]
We present a novel approach that combines the eigenanalysis of a covariance matrix evaluated on a training set with a Hessian matrix evaluated on a deep learning model.
Our method captures intricate patterns and relationships, enhancing classification performance.
arXiv Detail & Related papers (2024-02-14T16:10:42Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
In this paper we offer a new perspective on the well established agglomerative clustering algorithm, focusing on recovery of hierarchical structure.
We recommend a simple variant of the standard algorithm, in which clusters are merged by maximum average dot product and not, for example, by minimum distance or within-cluster variance.
We demonstrate that the tree output by this algorithm provides a bona fide estimate of generative hierarchical structure in data, under a generic probabilistic graphical model.
arXiv Detail & Related papers (2023-05-24T11:05:12Z) - A Mathematical Programming Approach to Optimal Classification Forests [1.0705399532413618]
We propose a novel mathematical optimization-based methodology in which a given number of trees are simultaneously constructed.
The classification rule is derived by assigning to each observation its most frequently predicted class among the trees in the forest.
We show that our proposed method has equal or superior performance compared with state-of-the-art tree-based classification methods.
arXiv Detail & Related papers (2022-11-18T20:33:08Z) - Margin Optimal Classification Trees [0.0]
We present a novel mixed-integer formulation for the Optimal Classification Tree ( OCT) problem.
Our model, denoted as Margin Optimal Classification Tree (MARGOT), exploits the generalization capabilities of Support Vector Machines for binary classification.
To enhance the interpretability of our approach, we analyse two alternative versions of MARGOT, which include feature selection constraints inducing local sparsity of the hyperplanes.
arXiv Detail & Related papers (2022-10-19T14:08:56Z) - Gated recurrent units and temporal convolutional network for multilabel
classification [122.84638446560663]
This work proposes a new ensemble method for managing multilabel classification.
The core of the proposed approach combines a set of gated recurrent units and temporal convolutional neural networks trained with variants of the Adam gradients optimization approach.
arXiv Detail & Related papers (2021-10-09T00:00:16Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
We propose a new approach for binary classification from m U-sets for $mge2$.
Our key idea is to consider an auxiliary classification task called surrogate set classification (SSC)
arXiv Detail & Related papers (2021-02-01T07:36:38Z) - Robust Optimal Classification Trees under Noisy Labels [1.5039745292757671]
We propose a novel methodology to construct Optimal Classification Trees that takes into account that noisy labels may occur in the training sample.
Our approach rests on two main elements: (1) the splitting rules for the classification trees are designed to maximize the separation margin between classes applying the paradigm of SVM; and (2) some of the labels of the training sample are allowed to be changed during the construction of the tree trying to detect the label noise.
arXiv Detail & Related papers (2020-12-15T19:12:29Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z) - A Mathematical Programming approach to Binary Supervised Classification
with Label Noise [1.2031796234206138]
We propose novel methodologies to construct Support Vector Machine -based classifiers.
The first method incorporates relabeling directly in the SVM model.
A second family of methods combines clustering with classification at the same time, giving rise to a model that applies simultaneously similarity measures and SVM.
arXiv Detail & Related papers (2020-04-21T17:25:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.