Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection
- URL: http://arxiv.org/abs/2111.09099v3
- Date: Fri, 19 Nov 2021 15:20:58 GMT
- Title: Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection
- Authors: Nicolae-Catalin Ristea, Neelu Madan, Radu Tudor Ionescu, Kamal
Nasrollahi, Fahad Shahbaz Khan, Thomas B. Moeslund, Mubarak Shah
- Abstract summary: We propose to integrate the reconstruction-based functionality into a novel self-supervised predictive architectural building block.
Our block is equipped with a loss that minimizes the reconstruction error with respect to the masked area in the receptive field.
We demonstrate the generality of our block by integrating it into several state-of-the-art frameworks for anomaly detection on image and video.
- Score: 97.93062818228015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection is commonly pursued as a one-class classification problem,
where models can only learn from normal training samples, while being evaluated
on both normal and abnormal test samples. Among the successful approaches for
anomaly detection, a distinguished category of methods relies on predicting
masked information (e.g. patches, future frames, etc.) and leveraging the
reconstruction error with respect to the masked information as an abnormality
score. Different from related methods, we propose to integrate the
reconstruction-based functionality into a novel self-supervised predictive
architectural building block. The proposed self-supervised block is generic and
can easily be incorporated into various state-of-the-art anomaly detection
methods. Our block starts with a convolutional layer with dilated filters,
where the center area of the receptive field is masked. The resulting
activation maps are passed through a channel attention module. Our block is
equipped with a loss that minimizes the reconstruction error with respect to
the masked area in the receptive field. We demonstrate the generality of our
block by integrating it into several state-of-the-art frameworks for anomaly
detection on image and video, providing empirical evidence that shows
considerable performance improvements on MVTec AD, Avenue, and ShanghaiTech.
Related papers
- DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - AnoViT: Unsupervised Anomaly Detection and Localization with Vision
Transformer-based Encoder-Decoder [3.31490164885582]
We propose a vision transformer-based encoder-decoder model, named AnoViT, to reflect normal information by additionally learning the global relationship between image patches.
The proposed model performed better than the convolution-based model on three benchmark datasets.
arXiv Detail & Related papers (2022-03-21T09:01:37Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - A Multi-Scale A Contrario method for Unsupervised Image Anomaly
Detection [0.5156484100374058]
We propose an a contrario framework to detect anomalies in images applying statistical analysis to feature maps obtained via convolutions.
The proposed method is multi-scale and fully unsupervised and is able to detect anomalies in a wide variety of scenarios.
While the end goal of this work is the detection of subtle defects in leather samples for the automotive industry, we show that the same algorithm achieves state of the art results in public anomalies datasets.
arXiv Detail & Related papers (2021-10-05T23:29:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.