Boosting Supervised Learning Performance with Co-training
- URL: http://arxiv.org/abs/2111.09797v1
- Date: Thu, 18 Nov 2021 17:01:17 GMT
- Title: Boosting Supervised Learning Performance with Co-training
- Authors: Xinnan Du, William Zhang, Jose M. Alvarez
- Abstract summary: We propose a new light-weight self-supervised learning framework that could boost supervised learning performance with minimum additional cost.
Our results show that both self-supervised tasks can improve the accuracy of the supervised task and, at the same time, demonstrates strong domain adaption capability.
- Score: 15.986635379046602
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning perception models require a massive amount of labeled training
data to achieve good performance. While unlabeled data is easy to acquire, the
cost of labeling is prohibitive and could create a tremendous burden on
companies or individuals. Recently, self-supervision has emerged as an
alternative to leveraging unlabeled data. In this paper, we propose a new
light-weight self-supervised learning framework that could boost supervised
learning performance with minimum additional computation cost. Here, we
introduce a simple and flexible multi-task co-training framework that
integrates a self-supervised task into any supervised task. Our approach
exploits pretext tasks to incur minimum compute and parameter overheads and
minimal disruption to existing training pipelines. We demonstrate the
effectiveness of our framework by using two self-supervised tasks, object
detection and panoptic segmentation, on different perception models. Our
results show that both self-supervised tasks can improve the accuracy of the
supervised task and, at the same time, demonstrates strong domain adaption
capability when used with additional unlabeled data.
Related papers
- Guiding Through Complexity: What Makes Good Supervision for Hard Reasoning Tasks? [74.88417042125985]
We investigate various data-driven strategies that offer supervision data at different quality levels upon tasks of varying complexity.
We find that even when the outcome error rate for hard task supervision is high, training on such data can outperform perfectly correct supervision on easier subtasks.
Our results also reveal that supplementing hard task supervision with the corresponding subtask supervision can yield notable performance improvements.
arXiv Detail & Related papers (2024-10-27T17:55:27Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
We propose a data curriculum method, namely Data-CUBE, that arranges the orders of all the multi-task data for training.
In the task level, we aim to find the optimal task order to minimize the total cross-task interference risk.
In the instance level, we measure the difficulty of all instances per task, then divide them into the easy-to-difficult mini-batches for training.
arXiv Detail & Related papers (2024-01-07T18:12:20Z) - Functional Knowledge Transfer with Self-supervised Representation
Learning [11.566644244783305]
This work investigates the unexplored usability of self-supervised representation learning in the direction of functional knowledge transfer.
In this work, functional knowledge transfer is achieved by joint optimization of self-supervised learning pseudo task and supervised learning task.
arXiv Detail & Related papers (2023-03-12T21:14:59Z) - Composite Learning for Robust and Effective Dense Predictions [81.2055761433725]
Multi-task learning promises better model generalization on a target task by jointly optimizing it with an auxiliary task.
We find that jointly training a dense prediction (target) task with a self-supervised (auxiliary) task can consistently improve the performance of the target task, while eliminating the need for labeling auxiliary tasks.
arXiv Detail & Related papers (2022-10-13T17:59:16Z) - Task Compass: Scaling Multi-task Pre-training with Task Prefix [122.49242976184617]
Existing studies show that multi-task learning with large-scale supervised tasks suffers from negative effects across tasks.
We propose a task prefix guided multi-task pre-training framework to explore the relationships among tasks.
Our model can not only serve as the strong foundation backbone for a wide range of tasks but also be feasible as a probing tool for analyzing task relationships.
arXiv Detail & Related papers (2022-10-12T15:02:04Z) - Reducing Label Effort: Self-Supervised meets Active Learning [32.4747118398236]
Recent developments in self-training have achieved very impressive results rivaling supervised learning on some datasets.
Our experiments reveal that self-training is remarkably more efficient than active learning at reducing the labeling effort.
The performance gap between active learning trained either with self-training or from scratch diminishes as we approach to the point where almost half of the dataset is labeled.
arXiv Detail & Related papers (2021-08-25T20:04:44Z) - Continual Learning From Unlabeled Data Via Deep Clustering [7.704949298975352]
Continual learning aims to learn new tasks incrementally using less computation and memory resources instead of retraining the model from scratch whenever new task arrives.
We introduce a new framework to make continual learning feasible in unsupervised mode by using pseudo label obtained from cluster assignments to update model.
arXiv Detail & Related papers (2021-04-14T23:46:17Z) - Self-supervised driven consistency training for annotation efficient
histopathology image analysis [13.005873872821066]
Training a neural network with a large labeled dataset is still a dominant paradigm in computational histopathology.
We propose a self-supervised pretext task that harnesses the underlying multi-resolution contextual cues in histology whole-slide images to learn a powerful supervisory signal for unsupervised representation learning.
We also propose a new teacher-student semi-supervised consistency paradigm that learns to effectively transfer the pretrained representations to downstream tasks based on prediction consistency with the task-specific un-labeled data.
arXiv Detail & Related papers (2021-02-07T19:46:21Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - Improving Semantic Segmentation via Self-Training [75.07114899941095]
We show that we can obtain state-of-the-art results using a semi-supervised approach, specifically a self-training paradigm.
We first train a teacher model on labeled data, and then generate pseudo labels on a large set of unlabeled data.
Our robust training framework can digest human-annotated and pseudo labels jointly and achieve top performances on Cityscapes, CamVid and KITTI datasets.
arXiv Detail & Related papers (2020-04-30T17:09:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.