Reinforcement Learning with Adaptive Curriculum Dynamics Randomization
for Fault-Tolerant Robot Control
- URL: http://arxiv.org/abs/2111.10005v1
- Date: Fri, 19 Nov 2021 01:55:57 GMT
- Title: Reinforcement Learning with Adaptive Curriculum Dynamics Randomization
for Fault-Tolerant Robot Control
- Authors: Wataru Okamoto, Hiroshi Kera, Kazuhiko Kawamoto
- Abstract summary: The ACDR algorithm can adaptively train a quadruped robot in random actuator failure conditions.
The ACDR algorithm can be used to build a robot system that does not require additional modules for detecting actuator failures.
- Score: 4.9631159466100305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study is aimed at addressing the problem of fault tolerance of quadruped
robots to actuator failure, which is critical for robots operating in remote or
extreme environments. In particular, an adaptive curriculum reinforcement
learning algorithm with dynamics randomization (ACDR) is established. The ACDR
algorithm can adaptively train a quadruped robot in random actuator failure
conditions and formulate a single robust policy for fault-tolerant robot
control. It is noted that the hard2easy curriculum is more effective than the
easy2hard curriculum for quadruped robot locomotion. The ACDR algorithm can be
used to build a robot system that does not require additional modules for
detecting actuator failures and switching policies. Experimental results show
that the ACDR algorithm outperforms conventional algorithms in terms of the
average reward and walking distance.
Related papers
- Multi-Objective Algorithms for Learning Open-Ended Robotic Problems [1.0124625066746598]
Quadrupedal locomotion is a complex, open-ended problem vital to expanding autonomous vehicle reach.
Traditional reinforcement learning approaches often fall short due to training instability and sample inefficiency.
We propose a novel method leveraging multi-objective evolutionary algorithms as an automatic curriculum learning mechanism.
arXiv Detail & Related papers (2024-11-11T16:26:42Z) - Deep Reinforcement Learning with Enhanced PPO for Safe Mobile Robot Navigation [0.6554326244334868]
This study investigates the application of deep reinforcement learning to train a mobile robot for autonomous navigation in a complex environment.
The robot utilizes LiDAR sensor data and a deep neural network to generate control signals guiding it toward a specified target while avoiding obstacles.
arXiv Detail & Related papers (2024-05-25T15:08:36Z) - Mission-driven Exploration for Accelerated Deep Reinforcement Learning
with Temporal Logic Task Specifications [11.812602599752294]
We consider robots with unknown dynamics operating in environments with unknown structure.
Our goal is to synthesize a control policy that maximizes the probability of satisfying an automaton-encoded task.
We propose a novel DRL algorithm, which has the capability to learn control policies at a notably faster rate compared to similar methods.
arXiv Detail & Related papers (2023-11-28T18:59:58Z) - Learning Bipedal Walking for Humanoids with Current Feedback [5.429166905724048]
We present an approach for overcoming the sim2real gap issue for humanoid robots arising from inaccurate torque-tracking at the actuator level.
Our approach successfully trains a unified, end-to-end policy in simulation that can be deployed on a real HRP-5P humanoid robot to achieve bipedal locomotion.
arXiv Detail & Related papers (2023-03-07T08:16:46Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
We propose to leverage a sequential bias to learn control policies for complex robotic tasks using a single demonstration.
We show that DCIL-II can solve with unprecedented sample efficiency some challenging simulated tasks such as humanoid locomotion and stand-up.
arXiv Detail & Related papers (2022-11-09T10:28:40Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z) - Teaching a Robot to Walk Using Reinforcement Learning [0.0]
reinforcement learning can train optimal walking policies with ease.
We teach a simulated two-dimensional bipedal robot how to walk using the OpenAI Gym BipedalWalker-v3 environment.
ARS resulted in a better trained robot, and produced an optimal policy which officially "solves" the BipedalWalker-v3 problem.
arXiv Detail & Related papers (2021-12-13T21:35:45Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
Operational Space Control (OSC) has been used as an effective task-space controller for manipulation.
We propose OSC for Adaptation and Robustness (OSCAR), a data-driven variant of OSC that compensates for modeling errors.
We evaluate our method on a variety of simulated manipulation problems, and find substantial improvements over an array of controller baselines.
arXiv Detail & Related papers (2021-10-02T01:21:38Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Improving Input-Output Linearizing Controllers for Bipedal Robots via
Reinforcement Learning [85.13138591433635]
The main drawbacks of input-output linearizing controllers are the need for precise dynamics models and not being able to account for input constraints.
In this paper, we address both challenges for the specific case of bipedal robot control by the use of reinforcement learning techniques.
arXiv Detail & Related papers (2020-04-15T18:15:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.