Distributed Unsupervised Visual Representation Learning with Fused
Features
- URL: http://arxiv.org/abs/2111.10763v1
- Date: Sun, 21 Nov 2021 08:36:31 GMT
- Title: Distributed Unsupervised Visual Representation Learning with Fused
Features
- Authors: Yawen Wu, Zhepeng Wang, Dewen Zeng, Meng Li, Yiyu Shi, Jingtong Hu
- Abstract summary: Federated learning (FL) enables distributed clients to learn a shared model for prediction while keeping the training data local on each client.
We propose a federated contrastive learning framework consisting of two approaches: feature fusion and neighborhood matching.
It outperforms other methods by 11% on IID data and matches the performance of centralized learning.
- Score: 13.935997509072669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) enables distributed clients to learn a shared model
for prediction while keeping the training data local on each client. However,
existing FL requires fully-labeled data for training, which is inconvenient or
sometimes infeasible to obtain due to the high labeling cost and the
requirement of expertise. The lack of labels makes FL impractical in many
realistic settings. Self-supervised learning can address this challenge by
learning from unlabeled data such that FL can be widely used. Contrastive
learning (CL), a self-supervised learning approach, can effectively learn data
representations from unlabeled data. However, the distributed data collected on
clients are usually not independent and identically distributed (non-IID) among
clients, and each client may only have few classes of data, which degrades the
performance of CL and learned representations. To tackle this problem, we
propose a federated contrastive learning framework consisting of two
approaches: feature fusion and neighborhood matching, by which a unified
feature space among clients is learned for better data representations. Feature
fusion provides remote features as accurate contrastive information to each
client for better local learning. Neighborhood matching further aligns each
client's local features to the remote features such that well-clustered
features among clients can be learned. Extensive experiments show the
effectiveness of the proposed framework. It outperforms other methods by 11\%
on IID data and matches the performance of centralized learning.
Related papers
- A Bayesian Framework for Clustered Federated Learning [14.426129993432193]
One of the main challenges of federated learning (FL) is handling non-independent and identically distributed (non-IID) client data.
We present a unified Bayesian framework for clustered FL which associates clients to clusters.
This work provides insights on client-cluster associations and enables client knowledge sharing in new ways.
arXiv Detail & Related papers (2024-10-20T19:11:24Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - FedSampling: A Better Sampling Strategy for Federated Learning [81.85411484302952]
Federated learning (FL) is an important technique for learning models from decentralized data in a privacy-preserving way.
Existing FL methods usually uniformly sample clients for local model learning in each round.
We propose a novel data uniform sampling strategy for federated learning (FedSampling)
arXiv Detail & Related papers (2023-06-25T13:38:51Z) - Knowledge-Aware Federated Active Learning with Non-IID Data [75.98707107158175]
We propose a federated active learning paradigm to efficiently learn a global model with limited annotation budget.
The main challenge faced by federated active learning is the mismatch between the active sampling goal of the global model on the server and that of the local clients.
We propose Knowledge-Aware Federated Active Learning (KAFAL), which consists of Knowledge-Specialized Active Sampling (KSAS) and Knowledge-Compensatory Federated Update (KCFU)
arXiv Detail & Related papers (2022-11-24T13:08:43Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - FLIS: Clustered Federated Learning via Inference Similarity for Non-IID
Data Distribution [7.924081556869144]
We present a new algorithm, FLIS, which groups the clients population in clusters with jointly trainable data distributions.
We present experimental results to demonstrate the benefits of FLIS over the state-of-the-art benchmarks on CIFAR-100/10, SVHN, and FMNIST datasets.
arXiv Detail & Related papers (2022-08-20T22:10:48Z) - FRAug: Tackling Federated Learning with Non-IID Features via
Representation Augmentation [31.12851987342467]
Federated Learning (FL) is a decentralized learning paradigm in which multiple clients collaboratively train deep learning models.
We propose Federated Representation Augmentation (FRAug) to tackle this practical and challenging problem.
Our approach generates synthetic client-specific samples in the embedding space to augment the usually small client datasets.
arXiv Detail & Related papers (2022-05-30T07:43:42Z) - Unifying Distillation with Personalization in Federated Learning [1.8262547855491458]
Federated learning (FL) is a decentralized privacy-preserving learning technique in which clients learn a joint collaborative model through a central aggregator without sharing their data.
In this setting, all clients learn a single common predictor (FedAvg), which does not generalize well on each client's local data due to the statistical data heterogeneity among clients.
In this paper, we address this problem with PersFL, a two-stage personalized learning algorithm.
In the first stage, PersFL finds the optimal teacher model of each client during the FL training phase. In the second stage, PersFL distills the useful knowledge from
arXiv Detail & Related papers (2021-05-31T17:54:29Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Federated Semi-Supervised Learning with Inter-Client Consistency &
Disjoint Learning [78.88007892742438]
We study two essential scenarios of Federated Semi-Supervised Learning (FSSL) based on the location of the labeled data.
We propose a novel method to tackle the problems, which we refer to as Federated Matching (FedMatch)
arXiv Detail & Related papers (2020-06-22T09:43:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.