Domain Generalization for Mammography Detection via Multi-style and
Multi-view Contrastive Learning
- URL: http://arxiv.org/abs/2111.10827v1
- Date: Sun, 21 Nov 2021 14:29:50 GMT
- Title: Domain Generalization for Mammography Detection via Multi-style and
Multi-view Contrastive Learning
- Authors: Zheren Li, Zhiming Cui, Sheng Wang, Yuji Qi, Xi Ouyang, Qitian Chen,
Yuezhi Yang, Zhong Xue, Dinggang Shen, Jie-Zhi Cheng
- Abstract summary: A new contrastive learning scheme is developed to augment the generalization capability of deep learning model to various vendors with limited resources.
The backbone network is trained with a multi-style and multi-view unsupervised self-learning scheme for the embedding of invariant features to various vendor-styles.
The experimental results suggest that our approach can effectively improve detection performance on both seen and unseen domains.
- Score: 47.30824944649112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lesion detection is a fundamental problem in the computer-aided diagnosis
scheme for mammography. The advance of deep learning techniques have made a
remarkable progress for this task, provided that the training data are large
and sufficiently diverse in terms of image style and quality. In particular,
the diversity of image style may be majorly attributed to the vendor factor.
However, the collection of mammograms from vendors as many as possible is very
expensive and sometimes impractical for laboratory-scale studies. Accordingly,
to further augment the generalization capability of deep learning model to
various vendors with limited resources, a new contrastive learning scheme is
developed. Specifically, the backbone network is firstly trained with a
multi-style and multi-view unsupervised self-learning scheme for the embedding
of invariant features to various vendor-styles. Afterward, the backbone network
is then recalibrated to the downstream task of lesion detection with the
specific supervised learning. The proposed method is evaluated with mammograms
from four vendors and one unseen public dataset. The experimental results
suggest that our approach can effectively improve detection performance on both
seen and unseen domains, and outperforms many state-of-the-art (SOTA)
generalization methods.
Related papers
- Deep Multimodal Collaborative Learning for Polyp Re-Identification [4.4028428688691905]
Colonoscopic Polyp Re-Identification aims to match the same polyp from a large gallery with images from different views taken using different cameras.
Traditional methods for object ReID directly adopting CNN models trained on the ImageNet dataset produce unsatisfactory retrieval performance.
We propose a novel Deep Multimodal Collaborative Learning framework named DMCL for polyp re-identification.
arXiv Detail & Related papers (2024-08-12T04:05:19Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Self-Supervised Endoscopic Image Key-Points Matching [1.3764085113103222]
This paper proposes a novel self-supervised approach for endoscopic image matching based on deep learning techniques.
Our method outperformed standard hand-crafted local feature descriptors in terms of precision and recall.
arXiv Detail & Related papers (2022-08-24T10:47:21Z) - Generalized Multi-Task Learning from Substantially Unlabeled
Multi-Source Medical Image Data [11.061381376559053]
MultiMix is a new multi-task learning model that jointly learns disease classification and anatomical segmentation in a semi-supervised manner.
Our experiments with varying quantities of multi-source labeled data in the training sets confirm the effectiveness of MultiMix.
arXiv Detail & Related papers (2021-10-25T18:09:19Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Additive Angular Margin for Few Shot Learning to Classify Clinical
Endoscopy Images [42.74958357195011]
We propose a few-shot learning approach that requires less training data and can be used to predict label classes of test samples from an unseen dataset.
We compare our approach to the several established methods on a large cohort of multi-center, multi-organ, and multi-modal endoscopy data.
arXiv Detail & Related papers (2020-03-23T00:20:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.