Knowledge Based Multilingual Language Model
- URL: http://arxiv.org/abs/2111.10962v1
- Date: Mon, 22 Nov 2021 02:56:04 GMT
- Title: Knowledge Based Multilingual Language Model
- Authors: Linlin Liu, Xin Li, Ruidan He, Lidong Bing, Shafiq Joty, Luo Si
- Abstract summary: We present a novel framework to pretrain knowledge based multilingual language models (KMLMs)
We generate a large amount of code-switched synthetic sentences and reasoning-based multilingual training data using the Wikidata knowledge graphs.
Based on the intra- and inter-sentence structures of the generated data, we design pretraining tasks to facilitate knowledge learning.
- Score: 44.70205282863062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge enriched language representation learning has shown promising
performance across various knowledge-intensive NLP tasks. However, existing
knowledge based language models are all trained with monolingual knowledge
graph data, which limits their application to more languages. In this work, we
present a novel framework to pretrain knowledge based multilingual language
models (KMLMs). We first generate a large amount of code-switched synthetic
sentences and reasoning-based multilingual training data using the Wikidata
knowledge graphs. Then based on the intra- and inter-sentence structures of the
generated data, we design pretraining tasks to facilitate knowledge learning,
which allows the language models to not only memorize the factual knowledge but
also learn useful logical patterns. Our pretrained KMLMs demonstrate
significant performance improvements on a wide range of knowledge-intensive
cross-lingual NLP tasks, including named entity recognition, factual knowledge
retrieval, relation classification, and a new task designed by us, namely,
logic reasoning. Our code and pretrained language models will be made publicly
available.
Related papers
- Adapting Multilingual LLMs to Low-Resource Languages with Knowledge Graphs via Adapters [3.7273829129985305]
This paper explores integration of graph knowledge from linguistic into multilingual Large Models (LLMs)
We employ language-specific adapters to improve performance for low-resource languages (LRLs) in sentiment analysis (SA) and named entity recognition (NER)
We assess how structured graph knowledge affects the performance of multilingual LLMs for LRLs in SA and NER.
arXiv Detail & Related papers (2024-07-01T15:56:24Z) - TRELM: Towards Robust and Efficient Pre-training for Knowledge-Enhanced Language Models [31.209774088374374]
This paper introduces TRELM, a Robust and Efficient Pre-training framework for Knowledge-Enhanced Language Models.
We employ a robust approach to inject knowledge triples and employ a knowledge-augmented memory bank to capture valuable information.
We show that TRELM reduces pre-training time by at least 50% and outperforms other KEPLMs in knowledge probing tasks and multiple knowledge-aware language understanding tasks.
arXiv Detail & Related papers (2024-03-17T13:04:35Z) - Adapters for Enhanced Modeling of Multilingual Knowledge and Text [54.02078328453149]
Language models have been extended to multilingual language models (MLLMs)
Knowledge graphs contain facts in an explicit triple format, which require careful curation and are only available in a few high-resource languages.
We propose to enhance MLLMs with knowledge from multilingual knowledge graphs (MLKGs) so as to tackle language and knowledge graph tasks across many languages.
arXiv Detail & Related papers (2022-10-24T21:33:42Z) - Prix-LM: Pretraining for Multilingual Knowledge Base Construction [59.02868906044296]
We propose a unified framework, Prix-LM, for multilingual knowledge construction and completion.
We leverage two types of knowledge, monolingual triples and cross-lingual links, extracted from existing multilingual KBs.
Experiments on standard entity-related tasks, such as link prediction in multiple languages, cross-lingual entity linking and bilingual lexicon induction, demonstrate its effectiveness.
arXiv Detail & Related papers (2021-10-16T02:08:46Z) - Reinforced Iterative Knowledge Distillation for Cross-Lingual Named
Entity Recognition [54.92161571089808]
Cross-lingual NER transfers knowledge from rich-resource language to languages with low resources.
Existing cross-lingual NER methods do not make good use of rich unlabeled data in target languages.
We develop a novel approach based on the ideas of semi-supervised learning and reinforcement learning.
arXiv Detail & Related papers (2021-06-01T05:46:22Z) - X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained
Language Models [103.75890012041366]
Language models (LMs) have proven surprisingly successful at capturing factual knowledge.
However, studies on LMs' factual representation ability have almost invariably been performed on English.
We create a benchmark of cloze-style probes for 23 typologically diverse languages.
arXiv Detail & Related papers (2020-10-13T05:29:56Z) - JAKET: Joint Pre-training of Knowledge Graph and Language Understanding [73.43768772121985]
We propose a novel joint pre-training framework, JAKET, to model both the knowledge graph and language.
The knowledge module and language module provide essential information to mutually assist each other.
Our design enables the pre-trained model to easily adapt to unseen knowledge graphs in new domains.
arXiv Detail & Related papers (2020-10-02T05:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.