Private and polynomial time algorithms for learning Gaussians and beyond
- URL: http://arxiv.org/abs/2111.11320v1
- Date: Mon, 22 Nov 2021 16:25:51 GMT
- Title: Private and polynomial time algorithms for learning Gaussians and beyond
- Authors: Hassan Ashtiani, Christopher Liaw
- Abstract summary: We present a framework for reducing $(varepsilon, delta)$ differentially private (DP) statistical estimation to its non-private counterpart.
We provide the first time $(varepsilon, delta)$-DP algorithm for robust learning of (unrestricted) Gaussians.
- Score: 13.947461378608525
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a fairly general framework for reducing $(\varepsilon, \delta)$
differentially private (DP) statistical estimation to its non-private
counterpart. As the main application of this framework, we give a polynomial
time and $(\varepsilon,\delta)$-DP algorithm for learning (unrestricted)
Gaussian distributions in $\mathbb{R}^d$. The sample complexity of our approach
for learning the Gaussian up to total variation distance $\alpha$ is
$\widetilde{O}\left(\frac{d^2}{\alpha^2}+\frac{d^2
\sqrt{\ln{1/\delta}}}{\alpha\varepsilon} \right)$, matching (up to logarithmic
factors) the best known information-theoretic (non-efficient) sample complexity
upper bound of Aden-Ali, Ashtiani, Kamath~(ALT'21). In an independent work,
Kamath, Mouzakis, Singhal, Steinke, and Ullman~(arXiv:2111.04609) proved a
similar result using a different approach and with $O(d^{5/2})$ sample
complexity dependence on $d$.
As another application of our framework, we provide the first polynomial time
$(\varepsilon, \delta)$-DP algorithm for robust learning of (unrestricted)
Gaussians.
Related papers
- Robust Sparse Regression with Non-Isotropic Designs [4.964650614497048]
We develop a technique to design efficiently computable estimators for sparse linear regression in the simultaneous presence of two adversaries.
We provide a novel analysis of weighted penalized Huber loss that is suitable for heavy-tailed designs in the presence of two adversaries.
arXiv Detail & Related papers (2024-10-31T13:51:59Z) - Efficient Statistics With Unknown Truncation, Polynomial Time Algorithms, Beyond Gaussians [7.04316974339151]
We study the estimation of distributional parameters when samples are shown only if they fall in some unknown set.
We develop tools that may be of independent interest, including a reduction from PAC learning with positive and unlabeled samples to PAC learning with positive and negative samples.
arXiv Detail & Related papers (2024-10-02T15:21:07Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
We show that any efficient SQ algorithm for the problem requires sample complexity at least $Omega(d1/2/(maxp, epsilon)2)$.
Our lower bound suggests that this quadratic dependence on $1/epsilon$ is inherent for efficient algorithms.
arXiv Detail & Related papers (2023-07-13T18:59:28Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
We study the problem of high-dimensional sparse mean estimation in the presence of an $epsilon$-fraction of adversarial outliers.
Our algorithms follow the Sum-of-Squares based, to algorithms approach.
arXiv Detail & Related papers (2022-06-07T16:49:54Z) - Small Covers for Near-Zero Sets of Polynomials and Learning Latent
Variable Models [56.98280399449707]
We show that there exists an $epsilon$-cover for $S$ of cardinality $M = (k/epsilon)O_d(k1/d)$.
Building on our structural result, we obtain significantly improved learning algorithms for several fundamental high-dimensional probabilistic models hidden variables.
arXiv Detail & Related papers (2020-12-14T18:14:08Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.