REPLICA: Enhanced Feature Pyramid Network by Local Image Translation and
Conjunct Attention for High-Resolution Breast Tumor Detection
- URL: http://arxiv.org/abs/2111.11546v1
- Date: Mon, 22 Nov 2021 21:33:02 GMT
- Title: REPLICA: Enhanced Feature Pyramid Network by Local Image Translation and
Conjunct Attention for High-Resolution Breast Tumor Detection
- Authors: Yifan Zhang, Haoyu Dong, Nicolas Konz, Hanxue Gu, Maciej A. Mazurowski
- Abstract summary: We call our method enhanced featuREsynthesis network by Local Image translation and Conjunct Attention, or REPLICA.
We use a convolutional autoencoder as a generator to create new images by injecting objects into images via local Pyramid and reconstruction of their features extracted in hidden layers.
Then due to the larger number of simulated images, we use a visual transformer to enhance outputs of each ResNet layer that serve as inputs to a feature pyramid network.
- Score: 6.112883009328882
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce an improvement to the feature pyramid network of standard object
detection models. We call our method enhanced featuRE Pyramid network by Local
Image translation and Conjunct Attention, or REPLICA. REPLICA improves object
detection performance by simultaneously (1) generating realistic but fake
images with simulated objects to mitigate the data-hungry problem of the
attention mechanism, and (2) advancing the detection model architecture through
a novel modification of attention on image feature patches. Specifically, we
use a convolutional autoencoder as a generator to create new images by
injecting objects into images via local interpolation and reconstruction of
their features extracted in hidden layers. Then due to the larger number of
simulated images, we use a visual transformer to enhance outputs of each ResNet
layer that serve as inputs to a feature pyramid network. We apply our
methodology to the problem of detecting lesions in Digital Breast Tomosynthesis
scans (DBT), a high-resolution medical imaging modality crucial in breast
cancer screening. We demonstrate qualitatively and quantitatively that REPLICA
can improve the accuracy of tumor detection using our enhanced standard object
detection framework via experimental results.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Robust CLIP-Based Detector for Exposing Diffusion Model-Generated Images [13.089550724738436]
Diffusion models (DMs) have revolutionized image generation, producing high-quality images with applications spanning various fields.
Their ability to create hyper-realistic images poses significant challenges in distinguishing between real and synthetic content.
This work introduces a robust detection framework that integrates image and text features extracted by CLIP model with a Multilayer Perceptron (MLP) classifier.
arXiv Detail & Related papers (2024-04-19T14:30:41Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - ReContrast: Domain-Specific Anomaly Detection via Contrastive
Reconstruction [29.370142078092375]
Most advanced unsupervised anomaly detection (UAD) methods rely on modeling feature representations of frozen encoder networks pre-trained on large-scale datasets.
We propose a novel epistemic UAD method, namely ReContrast, which optimize the entire network to reduce biases towards the pre-trained image domain.
We conduct experiments across two popular industrial defect detection benchmarks and three medical image UAD tasks, which shows our superiority over current state-of-the-art methods.
arXiv Detail & Related papers (2023-06-05T05:21:15Z) - ISSTAD: Incremental Self-Supervised Learning Based on Transformer for
Anomaly Detection and Localization [12.975540251326683]
We introduce a novel approach based on the Transformer backbone network.
We train a Masked Autoencoder (MAE) model solely on normal images.
In the subsequent stage, we apply pixel-level data augmentation techniques to generate corrupted normal images.
This process allows the model to learn how to repair corrupted regions and classify the status of each pixel.
arXiv Detail & Related papers (2023-03-30T13:11:26Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
We propose a novel self-supervised framework to detect objects in degraded low resolution images.
Our methods has achieved superior performance compared with existing methods when facing variant degradation situations.
arXiv Detail & Related papers (2022-08-05T09:36:13Z) - Deep Learning Approach for Hyperspectral Image Demosaicking, Spectral
Correction and High-resolution RGB Reconstruction [3.0478210530038443]
We propose a deep learning-based image demosaicking algorithm for snapshot hyperspectral images using supervised learning methods.
Due to the lack of publicly available medical images, a synthetic image generation approach is proposed to simulate snapshot images from existing medical image datasets.
The resulting demosaicked images are evaluated both quantitatively and qualitatively, showing clear improvements in image quality.
arXiv Detail & Related papers (2021-09-03T09:50:03Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - Multiscale Detection of Cancerous Tissue in High Resolution Slide Scans [0.0]
We present an algorithm for multi-scale tumor (chimeric cell) detection in high resolution slide scans.
Our approach modifies the effective receptive field at different layers in a CNN so that objects with a broad range of varying scales can be detected in a single forward pass.
arXiv Detail & Related papers (2020-10-01T18:56:46Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.