Learning Dynamic Compact Memory Embedding for Deformable Visual Object
Tracking
- URL: http://arxiv.org/abs/2111.11625v1
- Date: Tue, 23 Nov 2021 03:07:12 GMT
- Title: Learning Dynamic Compact Memory Embedding for Deformable Visual Object
Tracking
- Authors: Pengfei Zhu, Hongtao Yu, Kaihua Zhang, Yu Wang, Shuai Zhao, Lei Wang,
Tianzhu Zhang, Qinghua Hu
- Abstract summary: We propose a compact memory embedding to enhance the discrimination of the segmentation-based deformable visual tracking method.
Our method outperforms the excellent segmentation-based trackers, i.e., D3S and SiamMask on DAVIS 2017 benchmark.
- Score: 82.34356879078955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, template-based trackers have become the leading tracking algorithms
with promising performance in terms of efficiency and accuracy. However, the
correlation operation between query feature and the given template only
exploits accurate target localization, leading to state estimation error
especially when the target suffers from severe deformable variations. To
address this issue, segmentation-based trackers have been proposed that employ
per-pixel matching to improve the tracking performance of deformable objects
effectively. However, most of existing trackers only refer to the target
features in the initial frame, thereby lacking the discriminative capacity to
handle challenging factors, e.g., similar distractors, background clutter,
appearance change, etc. To this end, we propose a dynamic compact memory
embedding to enhance the discrimination of the segmentation-based deformable
visual tracking method. Specifically, we initialize a memory embedding with the
target features in the first frame. During the tracking process, the current
target features that have high correlation with existing memory are updated to
the memory embedding online. To further improve the segmentation accuracy for
deformable objects, we employ a point-to-global matching strategy to measure
the correlation between the pixel-wise query features and the whole template,
so as to capture more detailed deformation information. Extensive evaluations
on six challenging tracking benchmarks including VOT2016, VOT2018, VOT2019,
GOT-10K, TrackingNet, and LaSOT demonstrate the superiority of our method over
recent remarkable trackers. Besides, our method outperforms the excellent
segmentation-based trackers, i.e., D3S and SiamMask on DAVIS2017 benchmark.
Related papers
- RTracker: Recoverable Tracking via PN Tree Structured Memory [71.05904715104411]
We propose a recoverable tracking framework, RTracker, that uses a tree-structured memory to dynamically associate a tracker and a detector to enable self-recovery.
Specifically, we propose a Positive-Negative Tree-structured memory to chronologically store and maintain positive and negative target samples.
Our core idea is to use the support samples of positive and negative target categories to establish a relative distance-based criterion for a reliable assessment of target loss.
arXiv Detail & Related papers (2024-03-28T08:54:40Z) - Target-Aware Tracking with Long-term Context Attention [8.20858704675519]
Long-term context attention (LCA) module can perform extensive information fusion on the target and its context from long-term frames.
LCA uses the target state from the previous frame to exclude the interference of similar objects and complex backgrounds.
Our tracker achieves state-of-the-art performance on multiple benchmarks, with 71.1% AUC, 89.3% NP, and 73.0% AO on LaSOT, TrackingNet, and GOT-10k.
arXiv Detail & Related papers (2023-02-27T14:40:58Z) - Revisiting Color-Event based Tracking: A Unified Network, Dataset, and
Metric [53.88188265943762]
We propose a single-stage backbone network for Color-Event Unified Tracking (CEUTrack), which achieves the above functions simultaneously.
Our proposed CEUTrack is simple, effective, and efficient, which achieves over 75 FPS and new SOTA performance.
arXiv Detail & Related papers (2022-11-20T16:01:31Z) - Context-aware Visual Tracking with Joint Meta-updating [11.226947525556813]
We propose a context-aware tracking model to optimize the tracker over the representation space, which jointly meta-update both branches by exploiting information along the whole sequence.
The proposed tracking method achieves an EAO score of 0.514 on VOT2018 with the speed of 40FPS, demonstrating its capability of improving the accuracy and robustness of the underlying tracker with little speed drop.
arXiv Detail & Related papers (2022-04-04T14:16:00Z) - Joint Feature Learning and Relation Modeling for Tracking: A One-Stream
Framework [76.70603443624012]
We propose a novel one-stream tracking (OSTrack) framework that unifies feature learning and relation modeling.
In this way, discriminative target-oriented features can be dynamically extracted by mutual guidance.
OSTrack achieves state-of-the-art performance on multiple benchmarks, in particular, it shows impressive results on the one-shot tracking benchmark GOT-10k.
arXiv Detail & Related papers (2022-03-22T18:37:11Z) - A Discriminative Single-Shot Segmentation Network for Visual Object
Tracking [13.375369415113534]
We propose a discriminative single-shot segmentation tracker -- D3S2.
A single-shot network applies two target models with complementary geometric properties.
D3S2 outperforms the leading segmentation tracker SiamMask on video object segmentation benchmarks.
arXiv Detail & Related papers (2021-12-22T12:48:51Z) - Target Transformed Regression for Accurate Tracking [30.516462193231888]
This paper repurposes a Transformer-alike regression branch, termed as Target Transformed Regression (TREG) for accurate anchor-free tracking.
The core to our TREG is to model pair-wise relation between elements in target template and search region, and use the resulted target enhanced visual representation for accurate bounding box regression.
In addition, we devise a simple online template update mechanism to select reliable templates, increasing the robustness for appearance variations and geometric deformations of target in time.
arXiv Detail & Related papers (2021-04-01T11:25:23Z) - Graph Attention Tracking [76.19829750144564]
We propose a simple target-aware Siamese graph attention network for general object tracking.
Experiments on challenging benchmarks including GOT-10k, UAV123, OTB-100 and LaSOT demonstrate that the proposed SiamGAT outperforms many state-of-the-art trackers.
arXiv Detail & Related papers (2020-11-23T04:26:45Z) - Learning Spatio-Appearance Memory Network for High-Performance Visual
Tracking [79.80401607146987]
Existing object tracking usually learns a bounding-box based template to match visual targets across frames, which cannot accurately learn a pixel-wise representation.
This paper presents a novel segmentation-based tracking architecture, which is equipped with a local-temporal memory network to learn accurate-temporal correspondence.
arXiv Detail & Related papers (2020-09-21T08:12:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.