LMGP: Lifted Multicut Meets Geometry Projections for Multi-Camera
Multi-Object Tracking
- URL: http://arxiv.org/abs/2111.11892v1
- Date: Tue, 23 Nov 2021 14:09:47 GMT
- Title: LMGP: Lifted Multicut Meets Geometry Projections for Multi-Camera
Multi-Object Tracking
- Authors: Duy M. H. Nguyen, Roberto Henschel, Bodo Rosenhahn, Daniel Sonntag,
Paul Swoboda
- Abstract summary: Multi-Camera Multi-Object Tracking is currently drawing attention in the computer vision field due to its superior performance in real-world applications.
We propose a mathematically elegant multi-camera multiple object tracking approach based on a spatial-temporal lifted multicut formulation.
- Score: 42.87953709286856
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-Camera Multi-Object Tracking is currently drawing attention in the
computer vision field due to its superior performance in real-world
applications such as video surveillance with crowded scenes or in vast space.
In this work, we propose a mathematically elegant multi-camera multiple object
tracking approach based on a spatial-temporal lifted multicut formulation. Our
model utilizes state-of-the-art tracklets produced by single-camera trackers as
proposals. As these tracklets may contain ID-Switch errors, we refine them
through a novel pre-clustering obtained from 3D geometry projections. As a
result, we derive a better tracking graph without ID switches and more precise
affinity costs for the data association phase. Tracklets are then matched to
multi-camera trajectories by solving a global lifted multicut formulation that
incorporates short and long-range temporal interactions on tracklets located in
the same camera as well as inter-camera ones. Experimental results on the
WildTrack dataset yield near-perfect result, outperforming state-of-the-art
trackers on Campus while being on par on the PETS-09 dataset. We will make our
implementations available upon acceptance of the paper.
Related papers
- RockTrack: A 3D Robust Multi-Camera-Ken Multi-Object Tracking Framework [28.359633046753228]
We propose RockTrack, a 3D MOT method for multi-camera detectors.
RockTrack incorporates a confidence-guided preprocessing module to extract reliable motion and image observations.
RockTrack achieves state-of-the-art performance on the nuScenes vision-only tracking leaderboard with 59.1% AMOTA.
arXiv Detail & Related papers (2024-09-18T07:08:08Z) - MCTR: Multi Camera Tracking Transformer [45.66952089591361]
Multi-Camera Tracking tRansformer (MCTR) is a novel end-to-end approach tailored for multi-object detection and tracking across multiple cameras.
MCTR leverages end-to-end detectors like DEtector TRansformer (DETR) to produce detections and detection embeddings independently for each camera view.
The framework maintains set of track embeddings that encaplusate global information about the tracked objects, and updates them at every frame by integrating local information from the view-specific detection embeddings.
arXiv Detail & Related papers (2024-08-23T17:37:03Z) - MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark [63.878793340338035]
Multi-target multi-camera tracking is a crucial task that involves identifying and tracking individuals over time using video streams from multiple cameras.
Existing datasets for this task are either synthetically generated or artificially constructed within a controlled camera network setting.
We present MTMMC, a real-world, large-scale dataset that includes long video sequences captured by 16 multi-modal cameras in two different environments.
arXiv Detail & Related papers (2024-03-29T15:08:37Z) - DIVOTrack: A Novel Dataset and Baseline Method for Cross-View
Multi-Object Tracking in DIVerse Open Scenes [74.64897845999677]
We introduce a new cross-view multi-object tracking dataset for DIVerse Open scenes with dense tracking pedestrians.
Our DIVOTrack has fifteen distinct scenarios and 953 cross-view tracks, surpassing all cross-view multi-object tracking datasets currently available.
Furthermore, we provide a novel baseline cross-view tracking method with a unified joint detection and cross-view tracking framework named CrossMOT.
arXiv Detail & Related papers (2023-02-15T14:10:42Z) - A Unified Multi-view Multi-person Tracking Framework [5.143965432709092]
This study presents a Unified Multi-view Multi-person Tracking framework to bridge the gap between footprint tracking and pose tracking.
Without additional modifications, the framework can adopt monocular 2D bounding boxes and 2D poses as the input to produce robust 3D trajectories for multiple persons.
arXiv Detail & Related papers (2023-02-08T01:08:02Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
We propose a real-time city-scale multi-camera vehicle tracking system that handles real-world, low-resolution CCTV instead of idealized and curated video streams.
Our method is ranked among the top five performers on the public leaderboard.
arXiv Detail & Related papers (2022-04-15T12:47:01Z) - MMPTRACK: Large-scale Densely Annotated Multi-camera Multiple People
Tracking Benchmark [40.363608495563305]
We provide a large-scale densely-labeled multi-camera tracking dataset in five different environments with the help of an auto-annotation system.
The 3D tracking results are projected to each RGB camera view using camera parameters to create 2D tracking results.
This dataset provides a more reliable benchmark of multi-camera, multi-object tracking systems in cluttered and crowded environments.
arXiv Detail & Related papers (2021-11-30T06:29:14Z) - Know Your Surroundings: Panoramic Multi-Object Tracking by Multimodality
Collaboration [56.01625477187448]
We propose a MultiModality PAnoramic multi-object Tracking framework (MMPAT)
It takes both 2D panorama images and 3D point clouds as input and then infers target trajectories using the multimodality data.
We evaluate the proposed method on the JRDB dataset, where the MMPAT achieves the top performance in both the detection and tracking tasks.
arXiv Detail & Related papers (2021-05-31T03:16:38Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - Real-time 3D Deep Multi-Camera Tracking [13.494550690138775]
We propose a novel end-to-end tracking pipeline, Deep Multi-Camera Tracking (DMCT), which achieves reliable real-time multi-camera people tracking.
Our system achieves the state-of-the-art tracking results while maintaining real-time performance.
arXiv Detail & Related papers (2020-03-26T06:08:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.