Appliance Level Short-term Load Forecasting via Recurrent Neural Network
- URL: http://arxiv.org/abs/2111.11998v1
- Date: Tue, 23 Nov 2021 16:56:37 GMT
- Title: Appliance Level Short-term Load Forecasting via Recurrent Neural Network
- Authors: Yuqi Zhou, Arun Sukumaran Nair, David Ganger, Abhinandan Tripathi,
Chaitanya Baone, Hao Zhu
- Abstract summary: We present an STLF algorithm for efficiently predicting the power consumption of individual electrical appliances.
The proposed method builds upon a powerful recurrent neural network (RNN) architecture in deep learning.
- Score: 6.351541960369854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate load forecasting is critical for electricity market operations and
other real-time decision-making tasks in power systems. This paper considers
the short-term load forecasting (STLF) problem for residential customers within
a community. Existing STLF work mainly focuses on forecasting the aggregated
load for either a feeder system or a single customer, but few efforts have been
made on forecasting the load at individual appliance level. In this work, we
present an STLF algorithm for efficiently predicting the power consumption of
individual electrical appliances. The proposed method builds upon a powerful
recurrent neural network (RNN) architecture in deep learning, termed as long
short-term memory (LSTM). As each appliance has uniquely repetitive consumption
patterns, the patterns of prediction error will be tracked such that past
prediction errors can be used for improving the final prediction performance.
Numerical tests on real-world load datasets demonstrate the improvement of the
proposed method over existing LSTM-based method and other benchmark approaches.
Related papers
- Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
This work focuses on the pre-training loss as a more-efficient metric for performance estimation.
We extend the power law analytical function to predict domain-specific pre-training loss based on FLOPs across data sources.
We employ a two-layer neural network to model the non-linear relationship between multiple domain-specific loss and downstream performance.
arXiv Detail & Related papers (2024-10-11T04:57:48Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Short-Term Load Forecasting Using A Particle-Swarm Optimized Multi-Head
Attention-Augmented CNN-LSTM Network [0.0]
Short-term load forecasting is of paramount importance in the efficient operation and planning of power systems.
Recent strides in deep learning have shown promise in addressing this challenge.
I propose a novel solution that surmounts these obstacles.
arXiv Detail & Related papers (2023-09-07T13:06:52Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - A Meta-Learning Approach to Predicting Performance and Data Requirements [163.4412093478316]
We propose an approach to estimate the number of samples required for a model to reach a target performance.
We find that the power law, the de facto principle to estimate model performance, leads to large error when using a small dataset.
We introduce a novel piecewise power law (PPL) that handles the two data differently.
arXiv Detail & Related papers (2023-03-02T21:48:22Z) - Privacy-preserving household load forecasting based on non-intrusive
load monitoring: A federated deep learning approach [3.0584272247900577]
We first propose a household load forecasting method based on federated deep learning and non-intrusive load monitoring (NILM)
The integrated power is decomposed into individual device power by non-intrusive load monitoring, and the power of individual appliances is predicted separately using a federated deep learning model.
arXiv Detail & Related papers (2022-06-30T11:13:26Z) - Evaluating Short-Term Forecasting of Multiple Time Series in IoT
Environments [67.24598072875744]
Internet of Things (IoT) environments are monitored via a large number of IoT enabled sensing devices.
To alleviate this issue, sensors are often configured to operate at relatively low sampling frequencies.
This can hamper dramatically subsequent decision-making, such as forecasting.
arXiv Detail & Related papers (2022-06-15T19:46:59Z) - Advanced Statistical Learning on Short Term Load Process Forecasting [13.466565318976887]
Short Term Load Forecast (STLF) is necessary for effective scheduling, operation optimization trading, and decision-making for electricity consumers.
We propose different statistical nonlinear models to manage these challenges of hard type datasets and forecast 15-min frequency electricity load up to 2-days ahead.
arXiv Detail & Related papers (2021-10-19T12:32:40Z) - Random vector functional link neural network based ensemble deep
learning for short-term load forecasting [14.184042046855884]
This paper proposes a novel ensemble deep Random Functional Link (edRVFL) network for electricity load forecasting.
The hidden layers are stacked to enforce deep representation learning.
The model generates the forecasts by ensembling the outputs of each layer.
arXiv Detail & Related papers (2021-07-30T01:20:48Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - N-BEATS neural network for mid-term electricity load forecasting [8.430502131775722]
We show that our proposed deep neural network modeling approach is effective at solving the mid-term electricity load forecasting problem.
It is simple to implement and train, it does not require signal preprocessing, and it is equipped with a forecast bias reduction mechanism.
The empirical study shows that proposed neural network clearly outperforms all competitors in terms of both accuracy and forecast bias.
arXiv Detail & Related papers (2020-09-24T21:48:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.