Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice
- URL: http://arxiv.org/abs/2111.12292v1
- Date: Wed, 24 Nov 2021 06:18:32 GMT
- Title: Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice
- Authors: Ziquan Liu, Yi Xu, Yuanhong Xu, Qi Qian, Hao Li, Antoni Chan, Rong Jin
- Abstract summary: Fine-tuning a pre-trained model on the target data is widely used in many deep learning applications.
Recent studies have empirically shown that training from scratch has the final performance that is no worse than this pre-training strategy.
We propose a novel selection strategy to select a subset from pre-training data to help improve the generalization on the target task.
- Score: 52.11183787786718
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a dominant paradigm, fine-tuning a pre-trained model on the target data is
widely used in many deep learning applications, especially for small data sets.
However, recent studies have empirically shown that training from scratch has
the final performance that is no worse than this pre-training strategy once the
number of training iterations is increased in some vision tasks. In this work,
we revisit this phenomenon from the perspective of generalization analysis
which is popular in learning theory. Our result reveals that the final
prediction precision may have a weak dependency on the pre-trained model
especially in the case of large training iterations. The observation inspires
us to leverage pre-training data for fine-tuning, since this data is also
available for fine-tuning. The generalization result of using pre-training data
shows that the final performance on a target task can be improved when the
appropriate pre-training data is included in fine-tuning. With the insight of
the theoretical finding, we propose a novel selection strategy to select a
subset from pre-training data to help improve the generalization on the target
task. Extensive experimental results for image classification tasks on 8
benchmark data sets verify the effectiveness of the proposed data selection
based fine-tuning pipeline.
Related papers
- A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - A Supervised Contrastive Learning Pretrain-Finetune Approach for Time
Series [15.218841180577135]
We introduce a novel pretraining procedure that leverages supervised contrastive learning to distinguish features within each pretraining dataset.
We then propose a fine-tuning procedure designed to enhance the accurate prediction of the target data by aligning it more closely with the learned dynamics of the pretraining datasets.
arXiv Detail & Related papers (2023-11-21T02:06:52Z) - Better with Less: A Data-Active Perspective on Pre-Training Graph Neural
Networks [39.71761440499148]
Pre-training on graph neural networks (GNNs) aims to learn transferable knowledge for downstream tasks with unlabeled data.
We propose a better-with-less framework for graph pre-training: fewer, but carefully chosen data are fed into a GNN model.
Experiment results show that the proposed APT is able to obtain an efficient pre-training model with fewer training data and better downstream performance.
arXiv Detail & Related papers (2023-11-02T07:09:59Z) - Examining the Effect of Pre-training on Time Series Classification [21.38211396933795]
This study investigates the impact of pre-training followed by fine-tuning on the fine-tuning process.
We conducted a thorough examination of 150 classification datasets.
We find that pre-training can only help improve the optimization process for models that fit the data poorly.
Adding more pre-training data does not improve generalization, but it can strengthen the advantage of pre-training on the original data volume.
arXiv Detail & Related papers (2023-09-11T06:26:57Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
We study the impact of the trade-off between the intra-class diversity (the number of samples per class) and the inter-class diversity (the number of classes) of a supervised pre-training dataset.
With the size of the pre-training dataset fixed, the best downstream performance comes with a balance on the intra-/inter-class diversity.
arXiv Detail & Related papers (2023-05-20T16:23:50Z) - SEPT: Towards Scalable and Efficient Visual Pre-Training [11.345844145289524]
Self-supervised pre-training has shown great potential in leveraging large-scale unlabeled data to improve downstream task performance.
We build a task-specific self-supervised pre-training framework based on a simple hypothesis that pre-training on the unlabeled samples with similar distribution to the target task can bring substantial performance gains.
arXiv Detail & Related papers (2022-12-11T11:02:11Z) - Self-Distillation for Further Pre-training of Transformers [83.84227016847096]
We propose self-distillation as a regularization for a further pre-training stage.
We empirically validate the efficacy of self-distillation on a variety of benchmark datasets for image and text classification tasks.
arXiv Detail & Related papers (2022-09-30T02:25:12Z) - Dataset Pruning: Reducing Training Data by Examining Generalization
Influence [30.30255670341501]
Do all training data contribute to model's performance?
How to construct a smallest subset from the entire training data as a proxy training set without significantly sacrificing the model's performance?
arXiv Detail & Related papers (2022-05-19T05:36:35Z) - Efficient Conditional Pre-training for Transfer Learning [71.01129334495553]
We propose efficient filtering methods to select relevant subsets from the pre-training dataset.
We validate our techniques by pre-training on ImageNet in both the unsupervised and supervised settings.
We improve standard ImageNet pre-training by 1-3% by tuning available models on our subsets and pre-training on a dataset filtered from a larger scale dataset.
arXiv Detail & Related papers (2020-11-20T06:16:15Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.