Efficient and Optimal Algorithms for Contextual Dueling Bandits under
Realizability
- URL: http://arxiv.org/abs/2111.12306v1
- Date: Wed, 24 Nov 2021 07:14:57 GMT
- Title: Efficient and Optimal Algorithms for Contextual Dueling Bandits under
Realizability
- Authors: Aadirupa Saha and Akshay Krishnamurthy
- Abstract summary: We study the $K$ contextual dueling bandit problem, a sequential decision making setting in which the learner uses contextual information to make two decisions, but only observes emphpreference-based feedback suggesting that one decision was better than the other.
We provide a new algorithm that achieves the optimal regret rate for a new notion of best response regret, which is a strictly stronger performance measure than those considered in prior works.
- Score: 59.81339109121384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the $K$-armed contextual dueling bandit problem, a sequential
decision making setting in which the learner uses contextual information to
make two decisions, but only observes \emph{preference-based feedback}
suggesting that one decision was better than the other. We focus on the regret
minimization problem under realizability, where the feedback is generated by a
pairwise preference matrix that is well-specified by a given function class
$\mathcal F$. We provide a new algorithm that achieves the optimal regret rate
for a new notion of best response regret, which is a strictly stronger
performance measure than those considered in prior works. The algorithm is also
computationally efficient, running in polynomial time assuming access to an
online oracle for square loss regression over $\mathcal F$. This resolves an
open problem of Dud\'ik et al. [2015] on oracle efficient, regret-optimal
algorithms for contextual dueling bandits.
Related papers
- Distributed Online Bandit Nonconvex Optimization with One-Point Residual Feedback via Dynamic Regret [10.700891331004799]
This paper considers the distributed online bandit optimization problem with non loss functions over a time-varying digraph.
Players select an adversary and then the adversary assigns an arbitrary non-linear loss function to this player.
The expected regret of our algorithms is comparable to existing algorithms that use two-point deviation.
arXiv Detail & Related papers (2024-09-24T02:37:33Z) - Second Order Methods for Bandit Optimization and Control [34.51425758864638]
We show that our algorithm achieves optimal (in terms of terms of convex functions that we call $kappa$-2020) regret bounds for a large class of convex functions.
We also investigate the adaptation of our second-order bandit algorithm to online convex optimization with memory.
arXiv Detail & Related papers (2024-02-14T04:03:38Z) - Variance-Aware Regret Bounds for Stochastic Contextual Dueling Bandits [53.281230333364505]
This paper studies the problem of contextual dueling bandits, where the binary comparison of dueling arms is generated from a generalized linear model (GLM)
We propose a new SupLinUCB-type algorithm that enjoys computational efficiency and a variance-aware regret bound $tilde Obig(dsqrtsum_t=1Tsigma_t2 + dbig)$.
Our regret bound naturally aligns with the intuitive expectation in scenarios where the comparison is deterministic, the algorithm only suffers from an $tilde O(d)$ regret.
arXiv Detail & Related papers (2023-10-02T08:15:52Z) - Contextual Bandits and Imitation Learning via Preference-Based Active
Queries [17.73844193143454]
We consider the problem of contextual bandits and imitation learning, where the learner lacks direct knowledge of the executed action's reward.
Instead, the learner can actively query an expert at each round to compare two actions and receive noisy preference feedback.
The learner's objective is two-fold: to minimize the regret associated with the executed actions, while simultaneously, minimizing the number of comparison queries made to the expert.
arXiv Detail & Related papers (2023-07-24T16:36:04Z) - Adapting to Misspecification in Contextual Bandits [82.55565343668246]
We introduce a new family of oracle-efficient algorithms for $varepsilon$-misspecified contextual bandits.
We obtain the first algorithm that achieves the optimal $O(dsqrtT + varepsilonsqrtdT)$ regret bound for unknown misspecification level.
arXiv Detail & Related papers (2021-07-12T21:30:41Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
We propose a new algorithm for the min-player against smooth algorithms deployed by an adversary.
Our algorithm is guaranteed to make monotonic progress having no limit cycles, and to find an appropriate number of gradient ascents.
arXiv Detail & Related papers (2021-06-02T22:03:36Z) - Efficient Optimistic Exploration in Linear-Quadratic Regulators via
Lagrangian Relaxation [107.06364966905821]
We study the exploration-exploitation dilemma in the linear quadratic regulator (LQR) setting.
Inspired by the extended value iteration algorithm used in optimistic algorithms for finite MDPs, we propose to relax the optimistic optimization of ofulq.
We show that an $epsilon$-optimistic controller can be computed efficiently by solving at most $Obig(log (1/epsilon)big)$ Riccati equations.
arXiv Detail & Related papers (2020-07-13T16:30:47Z) - Model Selection in Contextual Stochastic Bandit Problems [51.94632035240787]
We develop a meta-algorithm that selects between base algorithms.
We show through a lower bound that even when one of the base algorithms has $O(sqrtT)$ regret, in general it is impossible to get better than $Omega(sqrtT)$ regret.
arXiv Detail & Related papers (2020-03-03T18:46:34Z) - Regret Minimization in Stochastic Contextual Dueling Bandits [40.17224226373741]
We consider the problem of $K$-armed dueling bandit in the contextual setting.
We present two algorithms for the setup with respective regret guarantees.
arXiv Detail & Related papers (2020-02-20T06:36:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.