Contrastive Object-level Pre-training with Spatial Noise Curriculum
Learning
- URL: http://arxiv.org/abs/2111.13651v2
- Date: Mon, 29 Nov 2021 14:01:12 GMT
- Title: Contrastive Object-level Pre-training with Spatial Noise Curriculum
Learning
- Authors: Chenhongyi Yang, Lichao Huang, Elliot J. Crowley
- Abstract summary: We present a curriculum learning mechanism that adaptively augments the generated regions, which allows the model to consistently acquire a useful learning signal.
Our experiments show that our approach improves on the MoCo v2 baseline by a large margin on multiple object-level tasks when pre-training on multi-object scene image datasets.
- Score: 12.697842097171119
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The goal of contrastive learning based pre-training is to leverage large
quantities of unlabeled data to produce a model that can be readily adapted
downstream. Current approaches revolve around solving an image discrimination
task: given an anchor image, an augmented counterpart of that image, and some
other images, the model must produce representations such that the distance
between the anchor and its counterpart is small, and the distances between the
anchor and the other images are large. There are two significant problems with
this approach: (i) by contrasting representations at the image-level, it is
hard to generate detailed object-sensitive features that are beneficial to
downstream object-level tasks such as instance segmentation; (ii) the
augmentation strategy of producing an augmented counterpart is fixed, making
learning less effective at the later stages of pre-training. In this work, we
introduce Curricular Contrastive Object-level Pre-training (CCOP) to tackle
these problems: (i) we use selective search to find rough object regions and
use them to build an inter-image object-level contrastive loss and an
intra-image object-level discrimination loss into our pre-training objective;
(ii) we present a curriculum learning mechanism that adaptively augments the
generated regions, which allows the model to consistently acquire a useful
learning signal, even in the later stages of pre-training. Our experiments show
that our approach improves on the MoCo v2 baseline by a large margin on
multiple object-level tasks when pre-training on multi-object scene image
datasets. Code is available at https://github.com/ChenhongyiYang/CCOP.
Related papers
- GS-Pose: Category-Level Object Pose Estimation via Geometric and
Semantic Correspondence [5.500735640045456]
Category-level pose estimation is a challenging task with many potential applications in computer vision and robotics.
We propose to utilize both geometric and semantic features obtained from a pre-trained foundation model.
This requires significantly less data to train than prior methods since the semantic features are robust to object texture and appearance.
arXiv Detail & Related papers (2023-11-23T02:35:38Z) - Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
Human-Object Interaction (HOI) detection aims to understand the interactions between humans and objects.
In this paper, we propose to alleviate the impact of such an unbalanced distribution via Virtual Image Leaning (VIL)
A novel label-to-image approach, Multiple Steps Image Creation (MUSIC), is proposed to create a high-quality dataset that has a consistent distribution with real images.
arXiv Detail & Related papers (2023-08-04T10:28:48Z) - CoDo: Contrastive Learning with Downstream Background Invariance for
Detection [10.608660802917214]
We propose a novel object-level self-supervised learning method, called Contrastive learning with Downstream background invariance (CoDo)
The pretext task is converted to focus on instance location modeling for various backgrounds, especially for downstream datasets.
Experiments on MSCOCO demonstrate that the proposed CoDo with common backbones, ResNet50-FPN, yields strong transfer learning results for object detection.
arXiv Detail & Related papers (2022-05-10T01:26:15Z) - Object-aware Contrastive Learning for Debiased Scene Representation [74.30741492814327]
We develop a novel object-aware contrastive learning framework that localizes objects in a self-supervised manner.
We also introduce two data augmentations based on ContraCAM, object-aware random crop and background mixup, which reduce contextual and background biases during contrastive self-supervised learning.
arXiv Detail & Related papers (2021-07-30T19:24:07Z) - Rectifying the Shortcut Learning of Background: Shared Object
Concentration for Few-Shot Image Recognition [101.59989523028264]
Few-Shot image classification aims to utilize pretrained knowledge learned from a large-scale dataset to tackle a series of downstream classification tasks.
We propose COSOC, a novel Few-Shot Learning framework, to automatically figure out foreground objects at both pretraining and evaluation stage.
arXiv Detail & Related papers (2021-07-16T07:46:41Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
Contrastive learning has revolutionized unsupervised representation learning.
Current contrastive models are ineffective at localizing the foreground object.
We propose a data-driven approach for learning in variance to backgrounds.
arXiv Detail & Related papers (2020-04-14T16:29:42Z) - Improving Few-shot Learning by Spatially-aware Matching and
CrossTransformer [116.46533207849619]
We study the impact of scale and location mismatch in the few-shot learning scenario.
We propose a novel Spatially-aware Matching scheme to effectively perform matching across multiple scales and locations.
arXiv Detail & Related papers (2020-01-06T14:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.