OmiTrans: generative adversarial networks based omics-to-omics
translation framework
- URL: http://arxiv.org/abs/2111.13785v1
- Date: Sat, 27 Nov 2021 00:45:10 GMT
- Title: OmiTrans: generative adversarial networks based omics-to-omics
translation framework
- Authors: Xiaoyu Zhang and Yike Guo
- Abstract summary: Deep learning framework adopted the idea of generative adversarial networks to achieve omics-to-omics translation.
OmiTrans was able to faithfully reconstruct gene expression profiles from DNA methylation data with high accuracy and great model generalisation.
- Score: 19.741298224791834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of high-throughput experimental technologies,
different types of omics (e.g., genomics, epigenomics, transcriptomics,
proteomics, and metabolomics) data can be produced from clinical samples. The
correlations between different omics types attracts a lot of research interest,
whereas the stduy on genome-wide omcis data translation (i.e, generation and
prediction of one type of omics data from another type of omics data) is almost
blank. Generative adversarial networks and the variants are one of the most
state-of-the-art deep learning technologies, which have shown great success in
image-to-image translation, text-to-image translation, etc. Here we proposed
OmiTrans, a deep learning framework adopted the idea of generative adversarial
networks to achieve omics-to-omics translation with promising results. OmiTrans
was able to faithfully reconstruct gene expression profiles from DNA
methylation data with high accuracy and great model generalisation, as
demonstrated in the experiments.
Related papers
- SpaRED benchmark: Enhancing Gene Expression Prediction from Histology Images with Spatial Transcriptomics Completion [2.032350440475489]
We present a systematically curated and processed database collected from 26 public sources.
We also propose a state-of-the-art transformer based completion technique for inferring missing gene expression.
Our contributions constitute the most comprehensive benchmark of gene expression prediction from histology images to date.
arXiv Detail & Related papers (2024-07-17T21:28:20Z) - Multimodal Prototyping for cancer survival prediction [45.61869793509184]
Multimodal survival methods combining gigapixel histology whole-slide images (WSIs) and transcriptomic profiles are particularly promising for patient prognostication and stratification.
Current approaches involve tokenizing the WSIs into smaller patches (>10,000 patches) and transcriptomics into gene groups, which are then integrated using a Transformer for predicting outcomes.
This process generates many tokens, which leads to high memory requirements for computing attention and complicates post-hoc interpretability analyses.
Our framework outperforms state-of-the-art methods with much less computation while unlocking new interpretability analyses.
arXiv Detail & Related papers (2024-06-28T20:37:01Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - Whole Genome Transformer for Gene Interaction Effects in Microbiome Habitat Specificity [3.972930262155919]
We propose a framework taking advantage of existing large models for gene vectorization to predict habitat specificity from entire microbial genome sequences.
We train and validate our approach on a large dataset of high quality microbiome genomes from different habitats.
arXiv Detail & Related papers (2024-05-09T09:34:51Z) - Efficient and Scalable Fine-Tune of Language Models for Genome
Understanding [49.606093223945734]
We present textscLingo: textscLanguage prefix ftextscIne-tuning for textscGentextscOmes.
Unlike DNA foundation models, textscLingo strategically leverages natural language foundation models' contextual cues.
textscLingo further accommodates numerous downstream fine-tune tasks by an adaptive rank sampling method.
arXiv Detail & Related papers (2024-02-12T21:40:45Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
Existing machine translation (NMT) studies mainly focus on developing dataset-specific models.
We propose a versatile'' model, i.e., the Unified Model Learning for NMT (UMLNMT) that works with data from different tasks.
OurNMT results in substantial improvements over dataset-specific models with significantly reduced model deployment costs.
arXiv Detail & Related papers (2023-05-04T12:21:52Z) - Modeling Dense Multimodal Interactions Between Biological Pathways and Histology for Survival Prediction [3.2274401541163322]
We propose a memory-efficient multimodal Transformer that can model interactions between pathway and histology patch tokens.
Our proposed model, SURVPATH, achieves state-of-the-art performance when evaluated against both unimodal and multimodal baselines.
arXiv Detail & Related papers (2023-04-13T21:02:32Z) - TransFool: An Adversarial Attack against Neural Machine Translation
Models [49.50163349643615]
We investigate the vulnerability of Neural Machine Translation (NMT) models to adversarial attacks and propose a new attack algorithm called TransFool.
We generate fluent adversarial examples in the source language that maintain a high level of semantic similarity with the clean samples.
Based on automatic and human evaluations, TransFool leads to improvement in terms of success rate, semantic similarity, and fluency compared to the existing attacks.
arXiv Detail & Related papers (2023-02-02T08:35:34Z) - Learning to Generalize to More: Continuous Semantic Augmentation for
Neural Machine Translation [50.54059385277964]
We present a novel data augmentation paradigm termed Continuous Semantic Augmentation (CsaNMT)
CsaNMT augments each training instance with an adjacency region that could cover adequate variants of literal expression under the same meaning.
arXiv Detail & Related papers (2022-04-14T08:16:28Z) - A Cross-Level Information Transmission Network for Predicting Phenotype
from New Genotype: Application to Cancer Precision Medicine [37.442717660492384]
We propose a novel Cross-LEvel Information Transmission network (CLEIT) framework.
Inspired by domain adaptation, CLEIT first learns the latent representation of high-level domain then uses it as ground-truth embedding.
We demonstrate the effectiveness and performance boost of CLEIT in predicting anti-cancer drug sensitivity from somatic mutations.
arXiv Detail & Related papers (2020-10-09T22:01:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.