Multi-instance Point Cloud Registration by Efficient Correspondence
Clustering
- URL: http://arxiv.org/abs/2111.14582v1
- Date: Mon, 29 Nov 2021 15:13:29 GMT
- Title: Multi-instance Point Cloud Registration by Efficient Correspondence
Clustering
- Authors: Weixuan Tang and Danping Zou
- Abstract summary: Existing solutions require sampling a lot of hypotheses to detect possible instances and reject the outliers.
We propose to directly group the set of noisy correspondences into different clusters based on a distance invariance matrix.
The results show that our approach can correctly register up to 20 instances with an F1 score of 90.46% in the presence of 70% outliers.
- Score: 6.190693048667185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of estimating the poses of multiple instances of the
source point cloud within a target point cloud. Existing solutions require
sampling a lot of hypotheses to detect possible instances and reject the
outliers, whose robustness and efficiency degrade notably when the number of
instances and outliers increase. We propose to directly group the set of noisy
correspondences into different clusters based on a distance invariance matrix.
The instances and outliers are automatically identified through clustering. Our
method is robust and fast. We evaluated our method on both synthetic and
real-world datasets. The results show that our approach can correctly register
up to 20 instances with an F1 score of 90.46% in the presence of 70% outliers,
which performs significantly better and at least 10x faster than existing
methods
Related papers
- Distributed Collapsed Gibbs Sampler for Dirichlet Process Mixture Models
in Federated Learning [0.22499166814992444]
This paper proposes a new distributed Markov Chain Monte Carlo (MCMC) inference method for DPMMs (DisCGS) using sufficient statistics.
Our approach uses the collapsed Gibbs sampler and is specifically designed to work on distributed data across independent and heterogeneous machines.
For instance, with a dataset of 100K data points, the centralized algorithm requires approximately 12 hours to complete 100 iterations while our approach achieves the same number of iterations in just 3 minutes.
arXiv Detail & Related papers (2023-12-18T13:16:18Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed.
While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster.
We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments.
arXiv Detail & Related papers (2023-03-29T08:23:26Z) - Refining a $k$-nearest neighbor graph for a computationally efficient
spectral clustering [1.5469452301122175]
approximate spectral clustering (ASC) uses sampling or quantization to select data representatives.
We propose a refined version of $k$-nearest neighbor graph, in which we keep data points and aggressively reduce number of edges.
Compared to ASC methods, the proposed method delivered a consistent performance despite significant reduction of edges.
arXiv Detail & Related papers (2023-02-22T11:31:32Z) - PointCLM: A Contrastive Learning-based Framework for Multi-instance
Point Cloud Registration [4.969636478156443]
PointCLM is a contrastive learning-based framework for mutli-instance point cloud registration.
Our method outperforms the state-of-the-art methods on both synthetic and real datasets by a large margin.
arXiv Detail & Related papers (2022-09-01T04:30:05Z) - Implicit Sample Extension for Unsupervised Person Re-Identification [97.46045935897608]
Clustering sometimes mixes different true identities together or splits the same identity into two or more sub clusters.
We propose an Implicit Sample Extension (OurWholeMethod) method to generate what we call support samples around the cluster boundaries.
Experiments demonstrate that the proposed method is effective and achieves state-of-the-art performance for unsupervised person Re-ID.
arXiv Detail & Related papers (2022-04-14T11:41:48Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
This paper considers the problem of online clustering with bandit feedback.
It includes a novel stopping rule for sequential testing that circumvents the need to solve any NP-hard weighted clustering problem as its subroutines.
We show through extensive simulations on synthetic and real-world datasets that BOC's performance matches the lower boundally, and significantly outperforms a non-adaptive baseline algorithm.
arXiv Detail & Related papers (2022-02-09T06:05:05Z) - Differentially-Private Clustering of Easy Instances [67.04951703461657]
In differentially private clustering, the goal is to identify $k$ cluster centers without disclosing information on individual data points.
We provide implementable differentially private clustering algorithms that provide utility when the data is "easy"
We propose a framework that allows us to apply non-private clustering algorithms to the easy instances and privately combine the results.
arXiv Detail & Related papers (2021-12-29T08:13:56Z) - Meta Clustering Learning for Large-scale Unsupervised Person
Re-identification [124.54749810371986]
We propose a "small data for big task" paradigm dubbed Meta Clustering Learning (MCL)
MCL only pseudo-labels a subset of the entire unlabeled data via clustering to save computing for the first-phase training.
Our method significantly saves computational cost while achieving a comparable or even better performance compared to prior works.
arXiv Detail & Related papers (2021-11-19T04:10:18Z) - Finding Geometric Models by Clustering in the Consensus Space [61.65661010039768]
We propose a new algorithm for finding an unknown number of geometric models, e.g., homographies.
We present a number of applications where the use of multiple geometric models improves accuracy.
These include pose estimation from multiple generalized homographies; trajectory estimation of fast-moving objects.
arXiv Detail & Related papers (2021-03-25T14:35:07Z) - reval: a Python package to determine best clustering solutions with
stability-based relative clustering validation [1.8129328638036126]
reval is a Python package that leverages stability-based relative clustering validation methods to determine best clustering solutions.
This work aims at developing a stability-based method that selects the best clustering solution as the one that replicates, via supervised learning, on unseen subsets of data.
arXiv Detail & Related papers (2020-08-27T10:36:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.