Greybody Radiation of scalar and Dirac perturbations of NUT Black Holes
- URL: http://arxiv.org/abs/2111.15005v2
- Date: Tue, 11 Jan 2022 17:25:37 GMT
- Title: Greybody Radiation of scalar and Dirac perturbations of NUT Black Holes
- Authors: Ahmad Al-Badawi, Sara Kanzi, and \.Izzet Sakall{\i}
- Abstract summary: We consider the spinorial wave equations, namely the Dirac and the Klein-Gordon equations, and greybody radiation in the NUT black hole spacetime.
- Score: 0.5735035463793008
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the spinorial wave equations, namely the Dirac and the
Klein-Gordon equations, and greybody radiation in the NUT black hole spacetime.
To this end, we first study the Dirac equation in NUT spacetime by using a null
tetrad in the Newman-Penrose (NP) formalism. Next, we separate the Dirac
equation into radial and angular sets. The angular set is solved in terms of
associated Legendre functions. With the radial set, we obtain the decoupled
radial wave equations and derive the one-dimensional Schr\"odinger wave
equations together with effective potentials. Then, we discuss the potentials
by plotting them as a function of radial distance in a physically acceptable
region. We also study the Klein-Gordon equation to compute the greybody factors
(GFs) for both bosons and fermions. The influence of the NUT parameter on the
GFs of the NUT spacetime is investigated in detail.
Related papers
- Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Heun-type solutions for the Dirac particle on the curved background of
Minkowski space-times [0.0]
We study the Dirac equation in the background of Minkowski space-time on a light cone.
Results are valid for a spinless charged particle in the context of the magnetic field.
arXiv Detail & Related papers (2023-08-21T07:11:25Z) - Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Dirac Equation for Photons: Origin of Polarisation [0.0]
We discuss propagation of coherent rays of photons in a graded-index optical fibre.
The energy spectrum is massive with the effective mass as a function of the confinement and orbital angular momentum.
Spin expectation value of a photon corresponds to the polarisation state in the Poincar'e sphere.
arXiv Detail & Related papers (2023-03-30T03:34:59Z) - Machine Learning S-Wave Scattering Phase Shifts Bypassing the Radial
Schr\"odinger Equation [77.34726150561087]
We present a proof of concept machine learning model resting on a convolutional neural network capable to yield accurate scattering s-wave phase shifts.
We discuss how the Hamiltonian can serve as a guiding principle in the construction of a physically-motivated descriptor.
arXiv Detail & Related papers (2021-06-25T17:25:38Z) - Schr\"odinger equation in a general curved space-time geometry [0.0]
We consider relativistic quantum field theory in the presence of an external electric potential in a general curved space-time geometry.
We calculate the leading correction due to the curvature of the space-time geometry to the Schr"odinger equation.
We then compute the non-vanishing probability of excitation for a hydrogen atom that falls in or is scattered by a general Schwarzschild black hole.
arXiv Detail & Related papers (2021-05-26T18:47:44Z) - Weyl-invariant derivation of Dirac equation from scalar tensor fields in
curved space-time [0.0]
We present a derivation of Dirac's equation in a curved space-time starting from a Weyl-invariant action principle in 4+K dimensions.
The resulting Dirac's equation yields naturally to the correctmagnetic ratio $g_e=2$ for the electron.
arXiv Detail & Related papers (2021-03-03T10:40:58Z) - Relativistic wave--particle duality for spinors [0.0]
relativistic wave--particle duality can be embodied in a relation $langle uirangle=barpsigammaipsi/barpsipsi$.
We use the Einstein-Cartan theory of gravity with torsion, which incorporates the spin-orbit interaction in curved spacetime.
arXiv Detail & Related papers (2021-01-11T22:06:27Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We present a family of topological quantum gravity theories associated with the geometric theory of the Ricci flow.
First, we use BRST quantization to construct a "primitive" topological Lifshitz-type theory for only the spatial metric.
We extend the primitive theory by gauging foliation-preserving spacetime symmetries.
arXiv Detail & Related papers (2020-10-29T06:15:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.