Molecular Attributes Transfer from Non-Parallel Data
- URL: http://arxiv.org/abs/2111.15146v1
- Date: Tue, 30 Nov 2021 06:10:22 GMT
- Title: Molecular Attributes Transfer from Non-Parallel Data
- Authors: Shuangjia Zheng, Ying Song, Zhang Pan, Chengtao Li, Le Song, Yuedong
Yang
- Abstract summary: We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
- Score: 57.010952598634944
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Optimizing chemical molecules for desired properties lies at the core of drug
development. Despite initial successes made by deep generative models and
reinforcement learning methods, these methods were mostly limited by the
requirement of predefined attribute functions or parallel data with manually
pre-compiled pairs of original and optimized molecules. In this paper, for the
first time, we formulate molecular optimization as a style transfer problem and
present a novel generative model that could automatically learn internal
differences between two groups of non-parallel data through adversarial
training strategies. Our model further enables both preservation of molecular
contents and optimization of molecular properties through combining auxiliary
guided-variational autoencoders and generative flow techniques. Experiments on
two molecular optimization tasks, toxicity modification and synthesizability
improvement, demonstrate that our model significantly outperforms several
state-of-the-art methods.
Related papers
- Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Text-Guided Multi-Property Molecular Optimization with a Diffusion Language Model [77.50732023411811]
We propose a text-guided multi-property molecular optimization method utilizing transformer-based diffusion language model (TransDLM)
TransDLM leverages standardized chemical nomenclature as semantic representations of molecules and implicitly embeds property requirements into textual descriptions.
Our approach surpasses state-of-the-art methods in optimizing molecular structural similarity and enhancing chemical properties on the benchmark dataset.
arXiv Detail & Related papers (2024-10-17T14:30:27Z) - Efficient Generation of Molecular Clusters with Dual-Scale Equivariant Flow Matching [5.909830898977327]
We develop a dual-scale flow matching method that separates training and inference into coarse-grained and all-atom stages.
We demonstrate the effectiveness of this method on a dataset of Y6 molecular clusters obtained through MD simulations.
arXiv Detail & Related papers (2024-10-10T02:17:27Z) - XMOL: Explainable Multi-property Optimization of Molecules [2.320539066224081]
We propose Explainable Multi-property Optimization of Molecules (XMOL) to optimize multiple molecular properties simultaneously.
Our approach builds on state-of-the-art geometric diffusion models, extending them to multi-property optimization.
We integrate interpretive and explainable techniques throughout the optimization process.
arXiv Detail & Related papers (2024-09-12T06:35:04Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
This work explores the challenging problem of molecule design by framing it as a conditional generative modeling task.
We propose a novel generative model comprising three components: (1) a latent vector with a learnable prior distribution; (2) a molecule generation model based on a causal Transformer, which uses the latent vector as a prompt; and (3) a property prediction model that predicts a molecule's target properties and/or constraint values using the latent prompt.
arXiv Detail & Related papers (2024-02-27T03:33:23Z) - Multi-Objective Latent Space Optimization of Generative Molecular Design Models [3.1996400013865656]
We propose a multi-objective latent space optimization (LSO) method that can significantly enhance the performance of generative molecular design (GMD)
We demonstrate that our multi-objective GMD LSO method can significantly improve the performance of GMD for jointly optimizing multiple molecular properties.
arXiv Detail & Related papers (2022-03-01T15:12:05Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Molecule Optimization via Fragment-based Generative Models [21.888942129750124]
In drug discovery, molecule optimization is an important step in order to modify drug candidates into better ones in terms of desired drug properties.
We present an innovative in silico approach to computationally optimizing molecules and formulate the problem as to generate optimized molecular graphs.
Our generative models follow the key idea of fragment-based drug design, and optimize molecules by modifying their small fragments.
arXiv Detail & Related papers (2020-12-08T05:52:16Z) - CASTELO: Clustered Atom Subtypes aidEd Lead Optimization -- a combined
machine learning and molecular modeling method [2.8381402107366034]
We propose a combined machine learning and molecular modeling approach that automates lead optimization workflow.
Our method provides new hints for drug modification hotspots which can be used to improve drug efficacy.
arXiv Detail & Related papers (2020-11-27T15:41:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.