Imbalanced Graph Classification via Graph-of-Graph Neural Networks
- URL: http://arxiv.org/abs/2112.00238v1
- Date: Wed, 1 Dec 2021 02:25:47 GMT
- Title: Imbalanced Graph Classification via Graph-of-Graph Neural Networks
- Authors: Yu Wang, Yuying Zhao, Neil Shah, Tyler Derr
- Abstract summary: Graph Neural Networks (GNNs) have achieved unprecedented success in learning graph representations to identify categorical labels of graphs.
We introduce a novel framework, Graph-of-Graph Neural Networks (G$2$GNN), which alleviates the graph imbalance issue by deriving extra supervision globally from neighboring graphs and locally from graphs themselves.
Our proposed G$2$GNN outperforms numerous baselines by roughly 5% in both F1-macro and F1-micro scores.
- Score: 16.589373163769853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have achieved unprecedented success in learning
graph representations to identify categorical labels of graphs. However, most
existing graph classification problems with GNNs follow a balanced data
splitting protocol, which is misaligned with many real-world scenarios in which
some classes have much fewer labels than others. Directly training GNNs under
this imbalanced situation may lead to uninformative representations of graphs
in minority classes, and compromise the overall performance of downstream
classification, which signifies the importance of developing effective GNNs for
handling imbalanced graph classification. Existing methods are either tailored
for non-graph structured data or designed specifically for imbalance node
classification while few focus on imbalance graph classification. To this end,
we introduce a novel framework, Graph-of-Graph Neural Networks (G$^2$GNN),
which alleviates the graph imbalance issue by deriving extra supervision
globally from neighboring graphs and locally from graphs themselves. Globally,
we construct a graph of graphs (GoG) based on kernel similarity and perform GoG
propagation to aggregate neighboring graph representations, which are initially
obtained by node-level propagation with pooling via a GNN encoder. Locally, we
employ topological augmentation via masking nodes or dropping edges to improve
the model generalizability in discerning topology of unseen testing graphs.
Extensive graph classification experiments conducted on seven benchmark
datasets demonstrate our proposed G$^2$GNN outperforms numerous baselines by
roughly 5\% in both F1-macro and F1-micro scores. The implementation of
G$^2$GNN is available at
\href{https://github.com/YuWVandy/G2GNN}{https://github.com/YuWVandy/G2GNN}.
Related papers
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
We study a new problem, GNN model evaluation, that aims to assess the performance of a specific GNN model trained on labeled and observed graphs.
We propose a two-stage GNN model evaluation framework, including (1) DiscGraph set construction and (2) GNNEvaluator training and inference.
Under the effective training supervision from the DiscGraph set, GNNEvaluator learns to precisely estimate node classification accuracy of the to-be-evaluated GNN model.
arXiv Detail & Related papers (2023-10-23T05:51:59Z) - Self-attention Dual Embedding for Graphs with Heterophily [6.803108335002346]
A number of real-world graphs are heterophilic, and this leads to much lower classification accuracy using standard GNNs.
We design a novel GNN which is effective for both heterophilic and homophilic graphs.
We evaluate our algorithm on real-world graphs containing thousands to millions of nodes and show that we achieve state-of-the-art results.
arXiv Detail & Related papers (2023-05-28T09:38:28Z) - A Topological characterisation of Weisfeiler-Leman equivalence classes [0.0]
Graph Neural Networks (GNNs) are learning models aimed at processing graphs and signals on graphs.
In this article, we rely on the theory of covering spaces to fully characterize the classes of graphs that GNNs cannot distinguish.
We show that the number of indistinguishable graphs in our dataset grows super-exponentially with the number of nodes.
arXiv Detail & Related papers (2022-06-23T17:28:55Z) - KGNN: Harnessing Kernel-based Networks for Semi-supervised Graph
Classification [13.419578861488226]
We propose a Kernel-based Graph Neural Network (KGNN) for semi-supervised graph classification.
We show that KGNN achieves impressive performance over competitive baselines.
arXiv Detail & Related papers (2022-05-21T10:03:46Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Transferability Properties of Graph Neural Networks [125.71771240180654]
Graph neural networks (GNNs) are provably successful at learning representations from data supported on moderate-scale graphs.
We study the problem of training GNNs on graphs of moderate size and transferring them to large-scale graphs.
Our results show that (i) the transference error decreases with the graph size, and (ii) that graph filters have a transferability-discriminability tradeoff that in GNNs is alleviated by the scattering behavior of the nonlinearity.
arXiv Detail & Related papers (2021-12-09T00:08:09Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
We present a unified GNN sparsification (UGS) framework that simultaneously prunes the graph adjacency matrix and the model weights.
We further generalize the popular lottery ticket hypothesis to GNNs for the first time, by defining a graph lottery ticket (GLT) as a pair of core sub-dataset and sparse sub-network.
arXiv Detail & Related papers (2021-02-12T21:52:43Z) - GraphCrop: Subgraph Cropping for Graph Classification [36.33477716380905]
We develop the textbfGraphCrop (Subgraph Cropping) data augmentation method to simulate the real-world noise of sub-structure omission.
By preserving the valid structure contexts for graph classification, we encourage GNNs to understand the content of graph structures in a global sense.
arXiv Detail & Related papers (2020-09-22T14:05:41Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z) - Few-Shot Learning on Graphs via Super-Classes based on Graph Spectral
Measures [14.932318540666545]
We study the problem of few shot graph classification in graph neural networks (GNNs) to recognize unseen classes, given limited labeled graph examples.
We propose an approach where a probability measure is assigned to each graph based on the spectrum of the graphs normalized Laplacian.
arXiv Detail & Related papers (2020-02-27T17:11:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.