Transformer-based Network for RGB-D Saliency Detection
- URL: http://arxiv.org/abs/2112.00582v1
- Date: Wed, 1 Dec 2021 15:53:58 GMT
- Title: Transformer-based Network for RGB-D Saliency Detection
- Authors: Yue Wang, Xu Jia, Lu Zhang, Yuke Li, James Elder, Huchuan Lu
- Abstract summary: Key to RGB-D saliency detection is to fully mine and fuse information at multiple scales across the two modalities.
We show that transformer is a uniform operation which presents great efficacy in both feature fusion and feature enhancement.
Our proposed network performs favorably against state-of-the-art RGB-D saliency detection methods.
- Score: 82.6665619584628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: RGB-D saliency detection integrates information from both RGB images and
depth maps to improve prediction of salient regions under challenging
conditions. The key to RGB-D saliency detection is to fully mine and fuse
information at multiple scales across the two modalities. Previous approaches
tend to apply the multi-scale and multi-modal fusion separately via local
operations, which fails to capture long-range dependencies. Here we propose a
transformer-based network to address this issue. Our proposed architecture is
composed of two modules: a transformer-based within-modality feature
enhancement module (TWFEM) and a transformer-based feature fusion module
(TFFM). TFFM conducts a sufficient feature fusion by integrating features from
multiple scales and two modalities over all positions simultaneously. TWFEM
enhances feature on each scale by selecting and integrating complementary
information from other scales within the same modality before TFFM. We show
that transformer is a uniform operation which presents great efficacy in both
feature fusion and feature enhancement, and simplifies the model design.
Extensive experimental results on six benchmark datasets demonstrate that our
proposed network performs favorably against state-of-the-art RGB-D saliency
detection methods.
Related papers
- HODINet: High-Order Discrepant Interaction Network for RGB-D Salient
Object Detection [4.007827908611563]
RGB-D salient object detection (SOD) aims to detect the prominent regions by jointly modeling RGB and depth information.
Most RGB-D SOD methods apply the same type of backbones and fusion modules to identically learn the multimodality and multistage features.
In this paper, we propose a high-order discrepant interaction network (HODINet) for RGB-D SOD.
arXiv Detail & Related papers (2023-07-03T11:56:21Z) - Interactive Context-Aware Network for RGB-T Salient Object Detection [7.544240329265388]
We propose a novel network called Interactive Context-Aware Network (ICANet)
ICANet contains three modules that can effectively perform the cross-modal and cross-scale fusions.
Experiments prove that our network performs favorably against the state-of-the-art RGB-T SOD methods.
arXiv Detail & Related papers (2022-11-11T10:04:36Z) - Dual Swin-Transformer based Mutual Interactive Network for RGB-D Salient
Object Detection [67.33924278729903]
In this work, we propose Dual Swin-Transformer based Mutual Interactive Network.
We adopt Swin-Transformer as the feature extractor for both RGB and depth modality to model the long-range dependencies in visual inputs.
Comprehensive experiments on five standard RGB-D SOD benchmark datasets demonstrate the superiority of the proposed DTMINet method.
arXiv Detail & Related papers (2022-06-07T08:35:41Z) - TransCMD: Cross-Modal Decoder Equipped with Transformer for RGB-D
Salient Object Detection [86.94578023985677]
In this work, we rethink this task from the perspective of global information alignment and transformation.
Specifically, the proposed method (TransCMD) cascades several cross-modal integration units to construct a top-down transformer-based information propagation path.
Experimental results on seven RGB-D SOD benchmark datasets demonstrate that a simple two-stream encoder-decoder framework can surpass the state-of-the-art purely CNN-based methods.
arXiv Detail & Related papers (2021-12-04T15:45:34Z) - Cross-Modality Fusion Transformer for Multispectral Object Detection [0.0]
Multispectral image pairs can provide the combined information, making object detection applications more reliable and robust.
We present a simple yet effective cross-modality feature fusion approach, named Cross-Modality Fusion Transformer (CFT) in this paper.
arXiv Detail & Related papers (2021-10-30T15:34:12Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
We propose a novel Cross-modality Discrepant Interaction Network (CDINet) for RGB-D SOD.
Two components are designed to implement the effective cross-modality interaction.
Our network outperforms $15$ state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-04T11:24:42Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
Depth information has proven to be a useful cue in the semantic segmentation of RGBD images for providing a geometric counterpart to the RGB representation.
Most existing works simply assume that depth measurements are accurate and well-aligned with the RGB pixels and models the problem as a cross-modal feature fusion.
In this paper, we propose a unified and efficient Crossmodality Guided to not only effectively recalibrate RGB feature responses, but also to distill accurate depth information via multiple stages and aggregate the two recalibrated representations alternatively.
arXiv Detail & Related papers (2020-07-17T18:35:24Z) - RGB-D Salient Object Detection with Cross-Modality Modulation and
Selection [126.4462739820643]
We present an effective method to progressively integrate and refine the cross-modality complementarities for RGB-D salient object detection (SOD)
The proposed network mainly solves two challenging issues: 1) how to effectively integrate the complementary information from RGB image and its corresponding depth map, and 2) how to adaptively select more saliency-related features.
arXiv Detail & Related papers (2020-07-14T14:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.